Skip to main content

Sets

  • Chapter
  • First Online:
Sets, Models and Proofs

Part of the book series: Springer Undergraduate Mathematics Series ((SUMS))

  • 3611 Accesses

Abstract

In this chapter basic constructions on sets are reviewed and the Schröder-Cantor-Bernstein theorem is proved. This theorem is applied when calculating the cardinality of the real line. The Axiom of Choice (AC) and Zorn’s Lemma (ZL) are presented with several applications in mathematics and in cardinal arithmetic. The theory of well-orders is developed, including transfinite induction and recursion; the equivalence between AC, ZL and the Well-order theorem is rigorously proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cantor, G.: Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. Journal für die reine und angewandte Mathematik 77, 258–262 (1874)

    MATH  Google Scholar 

  2. Cohen, P.J.: The independence of the continuum hypothesis. Proc. Nat. Acad. Sci. U.S.A. 50, 1143–1148 (1963)

    Article  MathSciNet  Google Scholar 

  3. Cohen, P.J.: Independence results in set theory. In: Addison, J.W., Henkin, L., Traski, A. (eds.) Theory of Models, pp. 39–54. North-Holland, Amsterdam (1965)

    Google Scholar 

  4. Dauben, J.W.: Georg Cantor. Princeton University Press, Princeton (1990)

    MATH  Google Scholar 

  5. Feferman, S.: Some applications of the notions of forcing and generic sets. Fundamenta Mathematicae 56, 325–345 (1964)

    Article  MathSciNet  Google Scholar 

  6. Gödel, K.: The Consistency of the Continuum Hypothesis. Annals of Mathematics Studies, vol. 3. Princeton University Press, Princeton (1940)

    Google Scholar 

  7. Hardin, C.C., Taylor, A.D.: A peculiar connection between the axiom of choice and predicting the future. Am. Math. Mon. 115, 91–96 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hartogs, F.: Über das Problem der Wohlordnung. Mathematische Annalen 76, 436–443 (1915)

    Article  MathSciNet  Google Scholar 

  9. Hodges, W.: Läuchli’s algebraic closure of \(\mathbb {Q}\). Math. Proc. Camb. Philos. Soc. 2, 289–297 (1976)

    Google Scholar 

  10. James, I.: Remarkable Mathematicians. Cambridge University Press, Washington, DC (2003)

    Google Scholar 

  11. Jech, T.J.: The Axiom of Choice. Studies in Logic and the Foundations of Mathematics, vol. 75. North-Holland (1973); Reprinted by Dover, New York (2008)

    Google Scholar 

  12. Kelley, J.L.: The Tychonoff product theorem implies the axiom of choice. Fundamenta Mathematicae 37, 75–76 (1950)

    Article  MathSciNet  Google Scholar 

  13. Rubin, H., Rubin, J.E.: Equivalents of the Axiom of Choice. Studies in Logic, vol. 116. North-Holland, New York (1985)

    Google Scholar 

  14. Solovay, R.M.: A model of set theory in which every set of reals is measurable. Ann. Math. Second Ser. 92, 1–56 (1970)

    Article  MathSciNet  Google Scholar 

  15. Specker, E.: Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom). Zeitschrift für mathematische Logik und Grundlagen der Mathematik 3(3), 173–210 (1957)

    Article  MathSciNet  Google Scholar 

  16. Zermelo, E.: Beweis, daß jede Menge wohlgeordnet werden kann. Mathematische Annalen 59, 514–516 (1904)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moerdijk, I., van Oosten, J. (2018). Sets. In: Sets, Models and Proofs. Springer Undergraduate Mathematics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92414-4_1

Download citation

Publish with us

Policies and ethics