Skip to main content

Physical Computation and First-Order Logic

  • Conference paper
  • First Online:
Machines, Computations, and Universality (MCU 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10881))

Included in the following conference series:

Abstract

We introduce a computational formalism that is deployable within an arbitrary logical system. This formalism is intended to capture computation on an arbitrary system, both physical and unphysical, including quantum computers, Blum-Shub-Smale machines, and infinite time Turing machines. We demonstrate that for finite problems, the computational power of any device describable via a finite first-order theory is equivalent to that of a Turing machine. Whereas for infinite problems, their computational power is equivalent to that of a type-2 machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    N.B. despite the similar name, theory machines are not related to the concept of a “logic theory machine” found in [19].

  2. 2.

    This is the only second-order sentence in the theory of \(\mathcal {N}\), and as we shall see in Example 4.2, it is unnecessary for describing a Turing machine computation.

  3. 3.

    Unlike BSS machines, if such a device requires only finite precision to be implemented correctly then the second order least upper bound axiom in RA is not required.

References

  1. Apelian, C., Surace, S.: Real and Complex Analysis. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  2. Baumeler, Ä., Wolf, S.: Computational tameness of classical non-causal models. Proc. R. Soc. A 474(2209) (2018). https://doi.org/10.1098/rspa.2017.0698

    Article  MathSciNet  Google Scholar 

  3. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic. Graph. Darst, vol. 53. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  4. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: \(NP\)-completeness, recursive functions and universal machines. Bull. Am. Math. Soc. 21, 1–46 (1989). https://doi.org/10.1090/S0273-0979-1989-15750-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Bournez, O., Dershowitz, N., Néron, P.: Axiomatizing analog algorithms. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 215–224. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8_22

    Chapter  Google Scholar 

  6. Barry Cooper, S.: Computability Theory. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  7. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A 400(1818), 97–117 (1985). https://doi.org/10.1098/rspa.1985.0070

    Article  MathSciNet  MATH  Google Scholar 

  8. Trillas, E., Eciolaza, L.: Fuzzy Logic. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14203-6

    Book  Google Scholar 

  9. Epstein, R.L.: Classical Mathematical Logic (2011)

    Google Scholar 

  10. Grigorieff, S., Valarcher, P.: Evolving MultiAlgebras unify all usual sequential computation models. Leibniz Int. Proc. Inform. (2010). https://doi.org/10.4230/LIPIcs.STACS.2010.2473

  11. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Trans. Comput. Log. 77–111 (2000). https://doi.org/10.1145/343369.343384

    Article  MathSciNet  Google Scholar 

  12. Hamkins, J.D., Lewis, A.: Infinite time Turing machines. J. Symb. Logic 65, 567–604 (2000). https://doi.org/10.2307/2586556

    Article  MathSciNet  MATH  Google Scholar 

  13. Henkin, L.: The completeness of the first-order functional calculus. J. Symb. Logic 14(3) (1949). https://doi.org/10.2307/2267044

  14. Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system compute? Proc. R. Soc. A 470(2169) (2014). https://doi.org/10.1098/rspa.2014.0182

    Article  Google Scholar 

  15. Kaye, R.: Models of Peano arithmetic (1991)

    Google Scholar 

  16. Kitaev, A.Y., Shen, A., Vyalyi, M.: Classical and Quantum Computation. American Mathematical Society, Boston (2002)

    Book  Google Scholar 

  17. Koepke, P., Koerwien, M.: Ordinal computations. Math. Struct. Comput. Sci. 16, 867–884 (2006). https://doi.org/10.1017/S0960129506005615

    Article  MathSciNet  MATH  Google Scholar 

  18. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics. Pergamon, Oxford (1987)

    MATH  Google Scholar 

  19. Newell, A., Simon, H.: The logic theory machine-a complex information processing system. IRE Trans. Info. Theor. 2, 61–79 (1956)

    Article  Google Scholar 

  20. Sierpiński, W.: Cardinal and ordinal numbers. Państwowe Wydawn. Naukowe, vol. 34 (1958)

    Google Scholar 

  21. Smullyan, R.M.: Theory of Formal Systems. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  22. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 2, 230–265 (1937)

    Article  MathSciNet  Google Scholar 

  23. Vakil, N.: Real Analysis Through Modern Infinitesimals. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  24. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Whyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Whyman, R. (2018). Physical Computation and First-Order Logic. In: Durand-Lose, J., Verlan, S. (eds) Machines, Computations, and Universality. MCU 2018. Lecture Notes in Computer Science(), vol 10881. Springer, Cham. https://doi.org/10.1007/978-3-319-92402-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92402-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92401-4

  • Online ISBN: 978-3-319-92402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics