Skip to main content

Biodegradable Plastics Production by Cyanobacteria

  • Chapter
  • First Online:

Part of the book series: EcoProduction ((ECOPROD))

Abstract

Commercial production of polyhydroxyalkanotes (PHAs), used as “green” thermoplastics in medicinal, fibre and agricultural field, is done by bacterial fermentation. The major drawback with bacterial system is high fermentation cost incurred due to expensive substrate and continuous oxygen supply. Therefore, in order to make PHAs production economically competitive, research efforts abound to exploit photoautotrophic hosts. In this context, phototrophic cyanobacteria are rising as a promising host for high PHAs accumulation in cytoplasm. Due to short generation time and minimum nutrient requirements, cyanobacterial cultivation is quite successful in wastewaters. Cyanobacteria accumulate high PHAs with various growth conditions, i.e. photoautotrophic, chemoheterotrophic with various carbon sources like glucose, fructose. It is evident from the recent studies that limiting nutrients supply and supplementation of excess carbon sources in the culture medium results in improved PHAs yield. Moreover, they grow better when fed with carbon dioxide, the major greenhouse gas. Therefore, utilization of cyanobacteria with wastewaters and carbon dioxide, for PHAs production seems highly promising as it has the dual advantage of polymer production and wastewaters recycling with photosynthetic utilization of CO2. This chapter presents an overview on the progresses and prospects of PHAs production from cyanobacteria. Different production strategies with nitrogen and non-nitrogen fixing cyanobacteria are discussed. Material and thermal properties of the produced PHAs are also analysed and compared with commercial polymers. This opens up the possibilities for low-cost production of PHAs polymers from cyanobacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Loo, C.Y., Sudesh, K.: Polyhydroxyalkanoates: biobased microbial plastics and their properties. Malasian Polym. J. 3(2), 31–57 (2007)

    Google Scholar 

  2. Khanna, S., Srivastava, A.K.: Recent advances in microbial polyhydroxyalkanoates. Process. Biochem. 40(2), 607–619 (2005)

    Article  CAS  Google Scholar 

  3. Johnstone, B.: A throw away answer. Far Eastern Econ. Rev. 147(6), 62–63 (1990)

    Google Scholar 

  4. Anderson, A.J., Dawes, E.A.: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54(4), 450–472 (1990)

    CAS  Google Scholar 

  5. Braunegg, G., Gilles, L., Klaus, F.: Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol. 65(2), 127–161 (1998)

    Article  CAS  Google Scholar 

  6. Lee, S.Y.: Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49(1), 1–4 (1996)

    Article  CAS  Google Scholar 

  7. Reis, M.A.M., Serafim, L.S., Lemos, P.C., Ramos, A.M., Aguiar, F.R., Van Loosdrecht, M.C.M.: Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess. Biosyst. Eng. 25(6), 377–385 (2003)

    Article  CAS  Google Scholar 

  8. Lee, S.Y., Choi, J., Wong, H.W.: Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. Int. J. Biol. Macromol. 25(1–3), 31–36 (1999)

    Article  CAS  Google Scholar 

  9. Brandl, H., Gross, R.A., Lenz, R.W., Fuller, R.C.: Plastic from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible and biodegradable polyesters. Adv. Biochem. Eng./Biotechnol. 41, 77–93 (1990)

    CAS  Google Scholar 

  10. Zinn, M., Witholt, B., Egli, T.: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug. Deliv. Rev. 53(1), 5–21 (2001)

    Article  CAS  Google Scholar 

  11. Williams, S.F., Martin, D.P., Horowitz, D.M., Peoples, O.P.: PHA applications: addressing the price performance issue I. Tissue engineering. Int. J. Biol Macromol. 1999, 25(1–3), 111–121

    Google Scholar 

  12. Chen, G.Q., Wu, Q.: The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33), 6565–6578 (2005)

    Article  CAS  Google Scholar 

  13. Thomson, N., Roy, I., Summers, D., Sivaniah, E.: In vitro production of polyhydroxyalkanoates: achievements and applications. J. Chem. Technol. Biotechnol. 85(6), 760–767 (2010)

    Article  CAS  Google Scholar 

  14. Philip, S., Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)

    Article  CAS  Google Scholar 

  15. Steinbüchel, A.: Biodegradable plastics. Curr. Opin. Biotechnol. 3(3), 291–297 (1992)

    Article  Google Scholar 

  16. Steinbüchel, A., Füchtenbusch, B.: Bacterial and other biological systems for polyester production. Trends Biotechnol. 16(10), 419–427 (1998)

    Article  Google Scholar 

  17. Vincenzini, M., De Philippis, R.: Polyhydroxyalkanoates. In: Cohen, Z. (ed.) Chemicals from Microalgae, pp. 292–312. Taylor and Francis Inc., London, USA (1999). ISBN 9780748405152

    Google Scholar 

  18. Luzier, W.D.: Materials derived from biomass/biodegradable material. Proc. Natl. Acad. Sci. U. S. A. 89(3), 839–842 (1992)

    Article  CAS  Google Scholar 

  19. Chanprateep, S.: Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 110(6), 621–632 (2010)

    Article  CAS  Google Scholar 

  20. Reddy, C.S.K., Ghai, R., Kalia, V.C.: Polyhydroxyalkanoates: an overview. Bioresour. Technol. 87(2), 137–146 (2003)

    Google Scholar 

  21. Doi, Y.: Microbial Polyesters, 1st edn., p. 166. VCH Publishers, New York, USA (1990). ISBN-13:978-0471187325

    Google Scholar 

  22. Steinbüchel, A.: PHB and other polyhydroxyalkanoic acids. In: Doi, Y., Fukuda, K. (eds.) Biodegradable Plastics and Polymers, pp. 362–364. Elsevier, New York, USA (1996). ISBN 9781483290409

    Google Scholar 

  23. Sudesh, K., Bhubalan, K., Chuah, J.A., Kek, Y.K., Kamilah, H., Sridewi, N., Lee, Y.F.: Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl. Microbiol. Biotechnol. 89(5), 1373–1386 (2011)

    Article  CAS  Google Scholar 

  24. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., Shah, S.: Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—A review. Biotechnol. Adv. 25(2), 148–175 (2007)

    Article  CAS  Google Scholar 

  25. Solaiman, D.K.Y., Ashby, R.D., Foglia, T.A., Marmer, W.N.: Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl. Microbiol. Biotechnol. 71(6), 783–789 (2006)

    Article  CAS  Google Scholar 

  26. Poirier, Y.: Production of new polymeric compounds in plants. Curr. Opin. Biotechnol. 10(2), 181–185 (1999)

    Article  CAS  Google Scholar 

  27. Poirier, Y.: Polyhydroxyalkanoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog. Lipid Res. 41(2), 135–155 (2002)

    Article  Google Scholar 

  28. Somerville, C.R., Bonetta, D.: Plants as factories for technical materials. Plant Physiol. 125(1), 168–171 (2001)

    Article  CAS  Google Scholar 

  29. Poirier, Y., Dennis, D.E., Klomparens, K., Somerville, C.: Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256(5056), 520–523 (1992)

    Article  CAS  Google Scholar 

  30. Rezzonico, E., Moire, L., Poirier, Y.: Polymers of 3-hydroxyacids in plants. Phytochem. Rev. 1(1), 87–92 (2002)

    Article  CAS  Google Scholar 

  31. Slater, S., Mitsky, T.A., Houmiel, K.L., Hao, M., Rieser, S.E., Taylor, N.B., Tran, M., Valentin, H.E., Rodriguez, D.J., Stone, D.A., Padgette, S.R., Kishore, G., Gruys, K.J.: Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat. Biotechnol. 17(10), 1011–1016 (1999)

    Article  CAS  Google Scholar 

  32. Stal, L.J., Moezelaar, R.: Fermentation in cyanobacteria. FEMS Microbiol. Rev. 21(2), 179–211 (1997)

    Article  CAS  Google Scholar 

  33. Sharma, L., Mallick, N.: Accumulation of poly-β-hydroyxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles, N and P status and carbon sources. Bioresour. Technol. 96(11), 1304–1310 (2005)

    Article  CAS  Google Scholar 

  34. Carr, N.G.: The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chlorogloea fritschii. Biochim. Biophys. Acta 120(2), 308–310 (1966)

    Article  CAS  Google Scholar 

  35. Jensen, T.E., Sicko, L.M.: The fine structure of Chlorogloea fritschii cultured in sodium acetate enriched medium. Cytologia 38(3), 381–391 (1971)

    Article  Google Scholar 

  36. Lama, L., Nicolaus, B., Calandrelli, V., Maria, M.C., Romano, I., Gambacorta, A.: Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10 C. Phytochemistry 42(3), 655–659 (1996)

    Article  CAS  Google Scholar 

  37. Panda, B., Jain, P., Sharma, L., Mallick, N.: Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour. Technol. 97(11), 1296–1301 (2006)

    Article  CAS  Google Scholar 

  38. Shrivastav, A., Mishra, S.K., Mishra, S.: Polyhydroxyalkanoates synthesis by Spirulina subsalsa from Gujarat coast of India. Int. J. Biol. Macromol. 46(2), 255–260 (2010)

    Article  CAS  Google Scholar 

  39. Vincenzini, M., Sili, C., De Philippis, R., Ena, A., Materassi, R.: Occurrence of poly-β-hydroxybutrate in Spirulina species. J. Bacteriol. 172(5), 2791–2792 (1990)

    Article  CAS  Google Scholar 

  40. Nishioka, M., Nakai, K., Miyake, M., Asada, Y., Taya, M.: Production of poly-β-hydroyxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate limitation. Biotechnol. Lett. 23(14), 1095–1099 (2001)

    Google Scholar 

  41. Sharma, L., Singh, A.K., Panda, B., Mallick, N.: Process optimization for poly-β-hydroxybutyrate production in a nitrogen fixing cyanobacterium, Nostoc muscorum using response surface methodology. Bioresour. Technol. 98(5), 987–993 (2007)

    Article  CAS  Google Scholar 

  42. Mallick, N., Gupta, S., Panda, B., Sen, R.: Process optimization for poly(3-hydroxybutyrate-co-3-hydroxyvalerate)co-polymer production by Nostoc muscorum. Biochem. Eng. J. 37(2), 125–130 (2007)

    Article  CAS  Google Scholar 

  43. Samantaray, S., Mallick, N.: Production and characterization of poly-β-hydroxybutyrate (PHB) polymer from Aulosira fertilissima. J. Appl. Phycol. 24(4), 803–814 (2012)

    Article  CAS  Google Scholar 

  44. Samantaray, S., Mallick, N.: Production of poly(3-hydroxybutyrateco-3-hydroxyvalerate) co-polymer by the diazotrophic cyanobacterium Aulosira fertilissima CCC 444. J. Appl. Phycol. 26(1), 237–245 (2014)

    Article  CAS  Google Scholar 

  45. Bhati, R., Mallick, N.: Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixingcyanobacterium, Nostoc muscorum Agardh. J. Chem. Technol. Biotechnol. 87(4), 505–512 (2012)

    Article  CAS  Google Scholar 

  46. Bhati, R., Mallick, N.: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res. 7, 78–85 (2015)

    Article  Google Scholar 

  47. Miyake, M., Erata, M., Asada, Y.A.: Thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-β-hydroxybutyrate. J Ferment Bioeng. 82(5), 512–514 (1996)

    Google Scholar 

  48. Panda, B., Mallick, N.: Enhanced poly-β-hydroxybutyrate accumulation in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. Lett. Appl. Microbiol. 44(2), 194–198 (2007)

    Article  CAS  Google Scholar 

  49. Toh, P.S.Y., Jau, M.H., Yew, S.P., Abed, R.M.M., Sudesh, K.: Comparison of polyhydroxyalkanoates biosynthesis, mobilization and the effects on cellular morphology in Spirulina platensis and Synechocystis sp. UNIWG. J. Biosci. 19(2), 21–38 (2008)

    Google Scholar 

  50. Haase, S.M., Huchzermeyer, B., Rath, T.: PHB accumulation in Nostoc muscorum under different carbon stress situations. J. Appl. Phycol. 24(2), 157–162 (2012)

    Article  CAS  Google Scholar 

  51. Samantaray, S., Mallick, N.: Impact of various stress conditions on poly-β-hydroxybutyrate (PHB) accumulation in Aulosira fertilissima CCC 444. Curr. Biotechnol. 4(3), 366–372 (2015)

    Article  CAS  Google Scholar 

  52. Bhati, R., Mallick, N.: Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: a sustainable approach. J. Appl. Phycol. 28(1), 161–168 (2016)

    Article  CAS  Google Scholar 

  53. Kamravamanesh, D., Pflugl, S., Nischkauer, W., Limbeck, A., Lackner, A., Herwig, C.: Phtosynthetic poly-β-hydroxybutyrate accumulation in unicellular cyanobacterium, Synechocystis sp. PCC 6714. AMB Express 7(1), 143 (2017)

    Google Scholar 

  54. Galego, N., Miguens, F.C., Sanchez, R.: Physical and functional characterization of PHASCL membranes. Polymer 43(10), 3109–3114 (2002)

    Article  CAS  Google Scholar 

  55. Ojumu, T.V., Yu, J., Solomon, B.O.: Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr. J. Biotechnol. 3(1), 18–24 (2004)

    Article  CAS  Google Scholar 

  56. Sankhla, I.S., Bhati, R., Singh, A.K., Mallick, N.: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production from a local isolate, Brevibacillus invocatus MTCC 9039. Bioresour. Technol. 101(6), 1947–1953 (2010)

    Article  CAS  Google Scholar 

  57. Bhati, R., Samantaray, S., Sharma, L., Mallick, N.: Poly-β-hydroxybutyrate accumulation in cyanobacteria under photoautotrophy. Biotechnol. J. 5(11), 1181–1185 (2010)

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

Author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Bhati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhati, R. (2019). Biodegradable Plastics Production by Cyanobacteria. In: Khoobchandani, M., Saxena, A. (eds) Biotechnology Products in Everyday Life. EcoProduction. Springer, Cham. https://doi.org/10.1007/978-3-319-92399-4_9

Download citation

Publish with us

Policies and ethics