Skip to main content

Biodiversity and Disease Transmission

  • Chapter
  • First Online:
The Connections Between Ecology and Infectious Disease

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 5))

Abstract

Biodiversity changes associated with the anthropogenic alteration of natural environments have been hypothesized to enhance disease transmission and to facilitate the emergence of infectious diseases. This chapter reviews the various links that may occur between biodiversity and disease transmission on scales ranging from global to local and the likely ecological mechanisms. The consequences of land usage and land cover changes on disease transmission are formulated through the overall effects on biodiversity observed from long-term observatories. Habitat fragmentation should lead to reduced diversity of pathogen species and changes in pathogen prevalence as proposed by the “perturbation hypothesis.” However, habitat fragmentation that leads to increased edge, and increasing contacts between different communities of reservoirs and vectors, should increase disease transmission and pathogen prevalence according to the “pathogen pool diversity” hypothesis. Network analyses represent new tools to investigate disease transmission in a changing biodiversity context, i.e., changes in multiple hosts—multiple parasite interactions. Finally, this review advocates for manipulative experiments, theoretical studies, and long-term data collection in ecological observatories that will help in building scenarios of future health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17:267–272

    Article  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280:361–367

    Article  CAS  PubMed  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Armstrong GL, Conn LA, Pinner RW (1999) Trends in infectious disease mortality in the United States during the 20th century. J Am Med Assoc 281:61–66

    Article  CAS  Google Scholar 

  • Bailey RG (2014) Ecoregions: the ecosystem geography of the oceans and continents. Springer, New York

    Book  Google Scholar 

  • Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and network models in epidemiology. J R Soc Interface 4:879–891

    Article  PubMed Central  PubMed  Google Scholar 

  • Begon M, Bennett M, Bowers RG, French NP, Hazel SM, Turner J (2002) A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol Infect 129:147–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blasdell K, Cosson JF, Chaval Y, Herbreteau V, Douangboupha B, Jittapalapong S, Lundqvist A, Hugot JP, Morand S, Buchy P (2011) Rodent-borne hantaviruses in Cambodia, Lao PDR, and Thailand. EcoHealth 8:432–443

    Article  PubMed  Google Scholar 

  • Blasdell K, Duong V, Eloit M, Chretien F, Ly S, Hul V, Deubel V, Morand S, Buchy P (2016) Evidence of human infection by new arenaviruses endemic to SEA. elife 5:e13135

    Article  PubMed Central  PubMed  Google Scholar 

  • Bogich TL, Funk S, Malcolm TR, Chhun N, Epstein JH, Chmura AA, Kilpatrick AM, Brownstein JS, Hutchison OC, Doyle-Capitman C, Deaville R, Morse SS, Cunningham AA, Daszak P (2013) Using network theory to identify the causes of disease outbreaks of unknown origin. J R Soc Interface 10:20120904

    Article  PubMed Central  PubMed  Google Scholar 

  • Bonds MH, Dobson AP, Keenan DC (2012) Disease ecology, biodiversity, and the latitudinal gradient in income. PLoS Biol 10:e1001456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bordes F, Morand S (2011) The impact of multiple infections on wild animal hosts: a review. Infect Ecol Epidemiol 1:1–10. https://doi.org/10.3402/iee.v1i0.7346

    Article  Google Scholar 

  • Bordes F, Blasdell K, Morand S (2015) Transmission ecology of rodent-borne diseases: new frontiers. Integr Zool 10:424–435

    Article  PubMed  Google Scholar 

  • Bordes F, Caron A, Blasdell K, de Garine Wichatitsky M, Morand S (2017) Forecasting potential emergence of zoonotic diseases in South-East Asia: network analysis identifies key rodent hosts. J Appl Ecol 54(3):691–700. https://doi.org/10.1111/1365-2664.12804

    Article  Google Scholar 

  • Brearley G, Rhodes J, Bradley A, Baxter G, Seabrook L, Lunney D, Liu Y, McAlpine C (2013) Wildlife disease prevalence in human-modified landscapes. Biol Rev Camb Philos Soc 88:427–442

    Article  PubMed  Google Scholar 

  • Carver S, Kuenzi A, Bagamian KH, Mills JN, Rollin PE, Zanto SN, Douglass R (2011) A temporal dilution effect: hantavirus infection in deer mice and the intermittent presence of voles in Montana. Oecologia 166:713–721

    Article  PubMed  Google Scholar 

  • Cashdan E (2014) Biogeography of human infectious diseases: a global historical analysis. PLoS One 9:e106752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Charles JK, Ang BB (2010) Non volant small mammal community responses to fragmentation of keang forests in Brunei Darussalam. Biodivers Conserv 19:543–561

    Article  Google Scholar 

  • Chen HW, Liu WC, Davis JA, Jordan F, Hwang MJ, Shao KT (2008) Network position of hosts in food webs and their parasite diversity. Oikos 117:1847–1855

    Article  Google Scholar 

  • Chivian E, Bernstein AS (2004) Embedded in nature: human health and biodiversity. Environ Health Perspect 112:12–13

    Article  Google Scholar 

  • Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA, Ortega CN, Sauer EL, Sehgal T, Young S, Rohr JR (2015) Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Natl Acad Sci USA 112:8667–8671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daily GC, Ehrlich PR (1996) Global change and human susceptibility to disease. Annu Rev Energy Environ 21:125–144

    Article  Google Scholar 

  • Derne BT, Fearnley EJ, Lau CL, Paynter S, Weinstein P (2011) Biodiversity and leptospirosis risk: a case of pathogen regulation? Med Hypotheses 77:339–344

    Article  PubMed  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Dobson AP (1995) The ecology and epidemiology of rinderpest virus in Serengeti and Ngorongoro crater conservation area. In: Sinclair ARE, Arcese P (eds) Serengetti II. Research management and conservation of an ecosystem. University of Chicago Press, Chicago, pp 485–505

    Google Scholar 

  • Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc R Soc Lond B 276:3037–3045

    Article  Google Scholar 

  • Dunn RR, Davies TJ, Harris NC, Galvin MC (2010) Global drivers of human pathogen richness and prevalence. Proc R Soc Lond B 277:2587–2595

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  • Fenoglio MS, Srivastava D, Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology 93:2407–2420

    Article  PubMed  Google Scholar 

  • Fincher C, Thornhill R (2008) A parasite-driven wedge: infectious diseases may explain language and other biodiversity. Oikos 9:1289–1297

    Article  Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990. Proc Natl Acad Sci USA 107:16732–16737

    Article  PubMed Central  PubMed  Google Scholar 

  • Gillespie TR, Chapman CA (2008) Forest fragmentation, the decline of an endangered primate and changes in host-parasite interactions relative to an unfragmented forest. Am J Primatol 70:222–230

    Article  PubMed  Google Scholar 

  • Gómez JM, Nunn CL, Verdú M (2013) Centrality in primate-parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proc Natl Acad Sci USA 110:7738–7741

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodin DG, Koch DE, Owen RD, Chu Y-K, Hutchinson JMS, Jonsson CB (2006) Land cover associated with hantavirus presence in Paraguay. Glob Ecol Biogeogr 15:519–527

    Article  Google Scholar 

  • Gottdenker NL, Streicker DG, Faust CL, Carroll CR (2014) Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11:619–632

    Article  PubMed  Google Scholar 

  • Guernier V, Hochberg ME, Guégan JF (2004) Ecology drives the worldwide distribution of human diseases. PLoS Biol 2:740–746

    Article  CAS  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE et al (2015) Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed Central  PubMed  Google Scholar 

  • Hagen M, Kissling WD, Rasmussen C, De Aguiar MAM, Brown LE et al (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–210

    Article  Google Scholar 

  • Hassell JM, Begon M, Ward MJ, Fèvre EM (2017) Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol Evol 32(1):55–67. https://doi.org/10.1016/j.tree.2016.09.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudson PJ, Rizzoli A, Grenfell BT et al (2002) The ecology of wildlife diseases. Oxford University Press, Oxford

    Google Scholar 

  • Hussain S, Ram MS, Kumar A, Shivaji S, Umapathy G (2013) Human presence increases parasitic load in endangered Lion-Tailed Macaques (Macaca silenus) in its fragmented rainforest habitats in Southern India. PLoS One 8:e63685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson PTJ, Ostfeld RS, Keesing F (2015) Frontiers in research on biodiversity and disease. Trends Ecol Evol 18:1119–1133

    Google Scholar 

  • Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY et al (2013) Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci USA 110:8399–8404

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonsson CB, Figueiredo LTM, Vapalahti O (2010) A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev 23:412–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamiya T, O’Dwyer K, Nakagawa S, Poulin R (2014) What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biol Rev 89:123–134

    Article  PubMed  Google Scholar 

  • Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Tiffany B, Ostfeld RS (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keesing F, Ostfeld RS, Saale R (2015) Is biodiversity good for your health? Science 349:235–236

    Article  CAS  PubMed  Google Scholar 

  • Lafferty KD, Wood CL (2013) It’s a myth that protection against disease is a strong and general service of biodiversity conservation: response to Ostfeld and Keesing. Trends Ecol Evol 28:503–504

    Article  PubMed  Google Scholar 

  • Lass S, Hudson PJ, Thakar J, Saric J, Harvill E, Albert R, Sarah E, Perkins SE (2013) Generating super-shedders: co-infection increases bacterial load and egg production of a gastrointestinal helminth. J R Soc Interface 10:20120588

    Article  PubMed Central  PubMed  Google Scholar 

  • Levi T, Kilpatrick MA, Mangel M, Wilmers CC (2012) Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci USA 109:10942–10947

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindahl J, Grace D (2015) The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol 5:11

    Google Scholar 

  • Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC, Dobson AP et al (2009) Epidemic dynamics at the human-animal interface. Science 326:1362–1367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100:567–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maffi L (2005) Linguistic, cultural and biological diversity. Annu Rev Anthropol 29:599–617

    Article  Google Scholar 

  • Mbora DNM, Mc Peek MA (2009) Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. J Anim Ecol 78:210–218

    Article  PubMed  Google Scholar 

  • McFarlane R, Sleigh A, McMichael T (2012) Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9:24–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Mihaljevic JR, Joseph MB, Orlofske SA, Paull SH (2014) The scaling of host density with richness affects the direction, shape, and detectability of diversity-disease relationships. PLoS One 9:e97812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morand S (2015a) Diversity and origins of human infectious diseases. In: Muehlenbein MP (ed) Basics in human evolution. Elsevier, New York, pp 405–414

    Chapter  Google Scholar 

  • Morand S (2015b) (macro-)Evolutionary ecology of parasite diversity: from determinants of parasite species richness to host diversification. Int J Parasitol Parasites Wildl 4:80–87

    Article  PubMed Central  PubMed  Google Scholar 

  • Morand S, Lajaunie C (2017) Biodiversity conservation in Southeast Asia: challenges in a changing environment. Routledge EarthScan, Oxon

    Book  Google Scholar 

  • Morand S, Owers K, Waret-Szkuta A, McIntyre KM, Baylis M (2013) Climate variability and outbreaks of infectious diseases in Europe. Nat Sci Rep 3:1774

    Article  CAS  Google Scholar 

  • Morand S, Jittapalapong S, Supputamongkol Y, Abdullah MT, Huan TB (2014a) Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter. PLoS One 9:e90032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morand S, McIntyre KM, Baylis M (2014b) Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters. Infect Genet Evol 24:76–87

    Article  PubMed  Google Scholar 

  • Morand S, Owers K, Bordes F (2014c) Biodiversity and emerging zoonoses. In: Akio Yamada A, Kahn LH, Kaplan B, Monath TP, Woodall J, Conti L (eds) Confronting emerging zoonoses: the one health paradigm. Springer, Tokyo, pp 27–41

    Google Scholar 

  • Morand S, Bordes F, Blasdell K, Pilosof S, Cornu J-F, Chaisiri K, Chaval Y, Cosson J-F, Claude J, Feyfant T, Herbreteau V, Dupuy S, Tran A (2015) Assessing the distribution of disease-bearing rodents in human-modified tropical landscapes. J Appl Ecol 52:784–794

    Article  Google Scholar 

  • Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R Soc Lond B 365:3709–3718

    Article  Google Scholar 

  • Murray KA, Daszak P (2013) Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence. Curr Opin Virol 3:79–83

    Article  PubMed Central  PubMed  Google Scholar 

  • Murray KA, Preston N, Allen T, Zambrana-Torrelio C, Hosseini PR, Daszak P (2015) Global biogeography of human infectious diseases. Proc Natl Acad Sci USA 112:12746–12751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olson DM, Dinerstein E (1998) The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515

    Article  Google Scholar 

  • Orrock JL, Allan BF, Drost CA (2011) Biogeographic and ecological regulation of disease: prevalence of Sin Nombre virus in island mice is related to island area, precipitation, and predator richness. Am Nat 177:691–697

    Article  PubMed  Google Scholar 

  • Palma RE, Polop JJ, Owen RD, Mills JM (2012) Ecology of rodent-associated Hantaviruses in the Southern cone of South America: Argentina, Chile, Paraguay and Uruguay. J Wildl Dis 48:267–281

    Article  PubMed  Google Scholar 

  • Pilosof S, Morand S, Krasnov BR, Nunn CL (2015) Potential parasite transmission in multi-host networks based on parasite sharing. PLoS One 10:e0117909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poisot T, Nunn C, Morand S (2014) Ongoing worldwide homogenization of human pathogens. BioRxiv. https://doi.org/10.1101/009977

  • Poulin R (2010) Network analysis shining light on parasite ecology and diversity. Trends Parasitol 26:492–498

    Article  PubMed  Google Scholar 

  • Randolph SE, Dobson ADM (2012) Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139:847–863

    Article  CAS  PubMed  Google Scholar 

  • Rohr JR, Dobson AP, Johnson PT, Kilpatrick AM, Paull SH, Raffel TR, Ruiz-Moreno D, Thomas MB (2011) Frontiers in climate change-disease. Trends Ecol Evol 26:270–277

    Article  PubMed Central  PubMed  Google Scholar 

  • Salkeld DJ, Padgett K, Jones JH (2013) A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol Lett 16:679–686

    Article  PubMed  PubMed Central  Google Scholar 

  • Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230

    Article  CAS  PubMed  Google Scholar 

  • Schmidt KA, Ostfeld RS (2001) Biodiversity and the dilution effect in disease ecology. Ecology 82:609–619

    Article  Google Scholar 

  • Shirley SM, Kark S (2009) The role of species traits and taxonomic patterns in alien bird impacts. Glob Ecol Biogeogr 18:450–459

    Article  Google Scholar 

  • Smith KF, Sax DF, Gaines SD, Guernier V, Guégan JF (2007) Globalization of human infectious disease. Ecology 88:1903–1910

    Article  PubMed  Google Scholar 

  • Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, Ramachandran S (2014) Global rise in human infectious disease outbreaks. J R Soc Interface 11:20140950

    Article  PubMed Central  PubMed  Google Scholar 

  • Springer YP, Hoekman D, Johnson PTJ et al (2016) Continental scale surveillance of infectious agents: tick-, mosquito-, and rodent-borne parasite sampling designs for NEON. Ecosphere e01271:7

    Google Scholar 

  • Suzán G, Marcé E, Giermakowski JT, Mills JN, Ceballos G, Ostfeld RS, Armien B, Pascale JM, Yates TL (2009) Experimental evidence for reduced rodent diversity causing increased hantavirus prevalence. PLoS One 4:e5461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swaddle JP, Calos SE (2008) Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS One 3:e2488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatem AJ, Rogers DJ (2006) Global transport networks and infectious disease spread. Adv Parasitol 62:293–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Telfer S, Bown KJ, Sekules R, Begon M, Hayden T, Birtles R (2005) Disruption of a host-parasite system following the introduction of an exotic host species. Parasitology 130:661–668

    Article  CAS  PubMed  Google Scholar 

  • Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science 330:243–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vazquez DP, Poulin R, Krasnov BR, Shenbrot GI (2005) Species abundance and the distribution of specialization in host–parasite interaction networks. J Anim Ecol 74:946–955

    Article  Google Scholar 

  • Wells K, Smales LR, Kallo EKV, Pfeiffer M (2007) Impacts of rain-forest logging on helminth assemblages in small mammals (Muridae, Tupaiidae) from Borneo. J Trop Ecol 23:35–43

    Article  Google Scholar 

  • Werden L, Barker IK, Bowman J, Gonzales EK, Leighton PA, Lindsay LR, Jardine CM (2014) Geography, deer, and host biodiversity shape the pattern of lyme disease emergence in the Thousand Islands archipelago of Ontario, Canada. PLoS One 9:e85640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White LA, Forester JD, Craft ME (2015) Using contact networks to explore mechanisms of parasite transmission in wildlife. Biol Rev 92:389–409

    Article  PubMed  Google Scholar 

  • Wilcox BA, Colwell RR (2005) Emerging and reemerging infectious diseases: biocomplexity as an interdisciplinary paradigm. EcoHealth 2:244–257

    Article  PubMed Central  Google Scholar 

  • Wilcox BA, Gubler DJ (2005) Disease ecology and the global emergence of zoonotic pathogens. Environ Health Prev Med 10:263–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was part of the BiodivHealthSEA project (http://www.biodivhealthsea.org) funded by the French ANR programme CP&ES (grant number ANR 11CPEL 002) and supported by the RTPI-CNRS INEE “Biodiversity, Health and Societies in Southeast Asia.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Morand .

Editor information

Editors and Affiliations

Ethics declarations

Funding

This study was funded by French ANR project FutureHealthSEA (grant number ANR-17-CE35-0003-01).

Conflict of Interest

Serge Morand declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morand, S. (2018). Biodiversity and Disease Transmission. In: Hurst, C. (eds) The Connections Between Ecology and Infectious Disease. Advances in Environmental Microbiology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-92373-4_2

Download citation

Publish with us

Policies and ethics