Skip to main content

Stem Cells and Cell Conversion in Livestock

  • Chapter
  • First Online:
Book cover Animal Biotechnology 2

Abstract

The main drive to study stem cells is their possible use as therapeutic agents. Within veterinary medicine, a direct medicinal use of stem cells is reserved to companion species. Domestic ungulates like ruminants and pig are often used for preclinical research.

A stem cell is an unspecialized cell type able to undergo asymmetrical divisions: one cell is identical to its mother; the other begins its transformation toward one or more cell types capable of specific functions.

Physiologically, small populations of stem cells are present in each organ, and their function is to counteract the physiological wear and tear. These are named organ-specific stem cells and can be isolated from any animal species as well as in humans.

Embryonic stem cells are not a physiological cell type and are derived from early embryos or can be generated artificially (induced pluripotent cells) by inducing a somatic cell to overexpress four specific pluripotency-related genes. They can proliferate indefinitely if kept undifferentiated or can give rise to any other cell type when cultured in the appropriate conditions or transplanted back into an embryo. However, as opposed to organ-specific stem cells, pluripotent stem cells have so far been difficult to obtain in any species other than humans and laboratory rodents.

In order to circumvent the lack of pluripotent cells in livestock species as well as their inherent susceptibility to culture-induced alterations and tumorigenic transformation, novel techniques of cell conversions have been developed that work effectively with no species-specific limitations. Epigenetic mechanisms are used to enhance cell plasticity so that the exposure to adequate culture conditions can transform easily accessible dermal fibroblasts into a wide range of different cell types. Their lack of permanent pluripotency makes them promising candidates for safe therapeutic applications in all species including livestock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberio R, Croxall N, Allegrucci C (2010) Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev 19:1627–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasia L, Sampaolesi M, Papini N, Oleari D, Lamorte G, Tringali C, Monti E, Galli D, Tettamanti G, Cossu G, Venerando B (2006) Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death Differ 13:2042–2051

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Tang F, Li X, Hayashi K, Gillich A, Lao K, Surani MA (2009) Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461:1292–1295

    Article  CAS  PubMed  Google Scholar 

  • Bao L, He L, Chen J, Wu Z, Liao J, Rao L, Ren J, Li H, Zhu H, Qian L, Gu Y, Dai H, Xu X, Zhou J, Wang W, Cui C, Xiao L (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL (2011) Trophectoderm lineage determination in cattle. Dev Cell 20:244–255

    Article  CAS  PubMed  Google Scholar 

  • Brevini TA, Pennarossa G, Attanasio L, Vanelli A, Gasparrini B, Gandolfi F (2010) Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev 6:484–495

    Article  CAS  Google Scholar 

  • Brevini TA, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G, Gandolfi F (2014) Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev 10:633

    Article  CAS  Google Scholar 

  • Brevini TA, Pennarossa G, Acocella F, Brizzola S, Zenobi A, Gandolfi F (2016) Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. Vet J 211:52

    Article  CAS  PubMed  Google Scholar 

  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  CAS  PubMed  Google Scholar 

  • Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Chandrakanthan V, Yeola A, Kwan JC, Oliver RA, Qiao Q, Kang YC, Zarzour P, Beck D, Boelen L, Unnikrishnan A, Villanueva JE, Nunez AC, Knezevic K, Palu C, Nasrallah R, Carnell M, Macmillan A, Whan R, Yu Y, Hardy P, Grey ST, Gladbach A, Delerue F, Ittner L, Mobbs R, Walkley CR, Purton LE, Ward RL, Wong JW, Hesson LB, Walsh W, Pimanda JE (2016) PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci U S A 113:E2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhang Q, Wu X, Schultz PG, Ding S (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126:410–411

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Takanashi S, Zhang Q, Xiong W, Zhu S, Peters EC, Ding S, Schultz PG (2007) Reversine increases the plasticity of lineage-committed mammalian cells. Proc Natl Acad Sci 104:10482–10487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, Wang M, Yang W, Pei G (2014) Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 24:665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Eijk MJ, van Rooijen MA, Modina S, Scesi L, Folkers G, van Tol HT, Bevers MM, Fisher SR, Lewin HA, Rakacolli D, Galli C, de Vaureix C, Trounson AO, Mummery CL, Gandolfi F (1999) Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biol Reprod 60:1093–1103

    Article  PubMed  Google Scholar 

  • Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284:17634–17640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106:10993–10998

    Article  PubMed  PubMed Central  Google Scholar 

  • Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286

    Article  CAS  PubMed  Google Scholar 

  • Glover TW, Coyle-Morris J, Pearce-Birge L, Berger C, Gemmill RM (1986) DNA demethylation induced by 5-azacytidine does not affect fragile X expression. Am J Hum Genet 38:309–318

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136:1063–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall VJ, Christensen J, Gao Y, Schmidt MH, Hyttel P (2009) Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev Dyn 238:2014–2024

    Article  CAS  PubMed  Google Scholar 

  • Harris DM, Hazan-Haley I, Coombes K, Bueso-Ramos C, Liu J, Liu Z, Li P, Ravoori M, Abruzzo L, Han L, Singh S, Sun M, Kundra V, Kurzrock R, Estrov Z (2011) Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells. PLoS One 6:e21250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654

    Article  CAS  PubMed  Google Scholar 

  • Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA (1985a) Altering gene expression with 5-azacytidine. Cell 40:485–486

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (1985b) Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation. Pharmacol Ther 28:17–27

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Taylor SM (1981) Hemimethylated duplex DNAs prepared from 5-azacytidine-treated cells. Nucleic Acids Res 9:2933–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Taylor SM, Wilson VL (1983) Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res 84:202–211

    PubMed  CAS  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh S, Piedrahita JA (2014) From “ES-like” cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81:103–111

    Article  PubMed  Google Scholar 

  • Kumar D, Talluri TR, Anand T, Kues WA (2015) Induced pluripotent stem cells: mechanisms, achievements and perspectives in farm animals. World J Stem Cells 7:315–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange-Consiglio A, Corradetti B, Bizzaro D, Magatti M, Ressel L, Tassan S, Parolini O, Cremonesi F (2012) Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. J Tissue Eng Regen Med 6:622–635

    Article  CAS  PubMed  Google Scholar 

  • Lange-Consiglio A, Tassan S, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F (2013) Investigating the efficacy of amnion-derived compared with bone marrow-derived mesenchymal stromal cells in equine tendon and ligament injuries. Cytotherapy 15:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Cang M, Lee AS, Zhang K, Liu D (2011a) Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One 6:e15947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H (2011b) Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 21:196–204

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ (2012) Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77(338-346):e331

    Google Scholar 

  • Manzoni EF, Pennarossa G, deEguileor M, Tettamanti G, Gandolfi F, Brevini TA (2016) 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Sci Rep 6:37017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirakhori F, Zeynali B, Kiani S, Baharvand H (2015) Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell J 17:153–158

    PubMed  PubMed Central  Google Scholar 

  • Montserrat N, Bahima EG, Batlle L, Hafner S, Rodrigues AM, Gonzalez F, Izpisua Belmonte JC (2011) Generation of pig iPS cells: a model for cell therapy. J Cardiovasc Transl Res 4:121–130

    Article  PubMed  Google Scholar 

  • Moschidou D, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H, Nowakowska B, Phoolchund A, Lay K, Ramasamy TS, Cananzi M, Nettersheim D, Sullivan M, Frost J, Moore G, Vermeesch JR, Fisk NM, Thrasher AJ, Atala A, Adjaye J, Schorle H, De Coppi P, Guillot PV (2012) Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther 20:1953–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC, Nagy A (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7:693

    Article  PubMed Central  Google Scholar 

  • Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

    Article  CAS  PubMed  Google Scholar 

  • Nichols J, Smith A (2011) The origin and identity of embryonic stem cells. Development 138:3–8

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313

    Article  CAS  PubMed  Google Scholar 

  • Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, Brevini TA (2013) Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci U S A 110:8948–8953

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennarossa G, Maffei S, Campagnol M, Rahman MM, Brevini TA, Gandolfi F (2014) Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Rev 10:31–43

    Article  CAS  Google Scholar 

  • Pennarossa G, Santoro R, Manzoni E, Pesce M, Gandolfi F, Brevini T (2018) Epigenetic erasing and pancreatic differentiation of dermal fibroblasts into insulin-producing cells are boosted by the use of low-stiffness substrate. Stem Cell Rev Rep In press

    Google Scholar 

  • Rim JS, Strickler KL, Barnes CW, Harkins LL, Staszkiewicz J, Gimble JM, Leno GH, Eilertsen KJ (2012) Temporal epigenetic modifications differentially regulate ES cell-like colony formation and maturation. Stem Cell Discov 2:45–57

    Article  CAS  Google Scholar 

  • Rossant J (2011) Developmental biology: a mouse is not a cow. Nature 471:457–458

    Article  CAS  PubMed  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    Article  CAS  PubMed  Google Scholar 

  • Soto DA, Ross PJ (2016) Pluripotent stem cells and livestock genetic engineering. Transgenic Res 25:289–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer ND, Gimble JM, Lopez MJ (2011) Mesenchymal stromal cells: past, present, and future. Vet Surg 40:129–139

    Article  PubMed  Google Scholar 

  • Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123:8–13

    Article  CAS  PubMed  Google Scholar 

  • Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89:2708–2716

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Ma H, Sparman ML, Lee HS, Ramsey CM, Woodward JS, Sritanaudomchai H, Masterson KR, Wolff EE, Jia Y, Mitalipov SM (2012) X-chromosome inactivation in monkey embryos and pluripotent stem cells. Dev Biol 371:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Talbot NC, Blomberg le A (2008) The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev 4:235–254

    Article  CAS  PubMed  Google Scholar 

  • Tamada H, Van Thuan N, Reed P, Nelson D, Katoku-Kikyo N, Wudel J, Wakayama T, Kikyo N (2006) Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol Cell Biol 26:1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SM, Jones PA (1982) Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol 111:187–194

    Article  CAS  PubMed  Google Scholar 

  • Telugu BP, Ezashi T, Roberts RM (2010) The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev 6:31–41

    Article  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  CAS  PubMed  Google Scholar 

  • Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F, Nowaczyk C, Flint N, Jagasia R, Jensen Zoffmann S, Truong HH, Petitjean P, Jessberger S, Graf M, Iacone R (2014) Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Rep 3:539–547

    Article  CAS  Google Scholar 

  • Vassiliev I, Vassilieva S, Beebe LF, McIlfatrick SM, Harrison SJ, Nottle MB (2010) Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro produced and in vivo derived embryos. J Reprod Dev 56:546–551

    Article  CAS  PubMed  Google Scholar 

  • West FD, Terlouw SL, Kwon DJ, Mumaw JL, Dhara SK, Hasneen K, Dobrinsky JR, Stice SL (2010) Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19:1211

    Article  CAS  PubMed  Google Scholar 

  • West FD, Uhl EW, Liu Y, Stowe H, Lu Y, Yu P, Gallegos-Cardenas A, Pratt SL, Stice SL (2011) Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 29:1640–1643

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, He Y, Li Z, Benner C, Tamura I, Krause MN, Nery JR, Du T, Zhang Z, Hishida T, Takahashi Y, Aizawa E, Kim NY, Lajara J, Guillen P, Campistol JM, Esteban CR, Ross PJ, Saghatelian A, Ren B, Ecker JR, Izpisua Belmonte JC (2015) An alternative pluripotent state confers interspecies chimaeric competency. Nature 521:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190

    Article  CAS  PubMed  Google Scholar 

  • Xu XQ, Graichen R, Soo SY, Balakrishnan T, Rahmat SN, Sieh S, Tham SC, Freund C, Moore J, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76:958–970

    Article  CAS  PubMed  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Carraresi Foundation and European Foundation for the Study of Diabetes (EFSD). The authors are members of the COST Actions FA1201 Epiconcept: Epigenetics and Periconception Environment, BM1308 Sharing Advances on Large Animal Models (SALAAM), CM1406 Epigenetic Chemical Biology (EPICHEM), and CA16119 In vitro 3-D total cell guidance and fitness (CellFit). A special thanks to Dr. G. Pennarossa, University of Milan, for the help in the preparation of the text and images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana A. L. Brevini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandolfi, F., Brevini, T.A.L. (2018). Stem Cells and Cell Conversion in Livestock. In: Niemann, H., Wrenzycki, C. (eds) Animal Biotechnology 2. Springer, Cham. https://doi.org/10.1007/978-3-319-92348-2_10

Download citation

Publish with us

Policies and ethics