Skip to main content

Technique and Application of Sex-Sorted Sperm in Domestic Farm Animals

  • Chapter
  • First Online:

Abstract

The Food and Agriculture Organization of the United Nations has recognised that the production of pre-sexed livestock by sperm or embryo sexing as a useful breeding tool to increase production efficiency, especially for traits that are sex-related. In this chapter, we briefly explain sex determination in mammals, review approaches to identifying X and Y chromosome-bearing sperm and their practical implications for semen handling and artificial insemination (AI) and compare their importance and success in the main farm animal species. The problems associated with current technology for sperm sexing, as reflected in the damage caused to mammalian sperm are then considered, followed by an assessment of the potential for replacing this technology by other methods.

In mammals, the most efficient method to bias sex ratios in offspring is to separate X and Y chromosome-bearing sperm by flow cytometry before insemination. Numerous other techniques purporting to alter the sex ratio have been proposed or discussed. None of these were able to produce significant separation of fertile X and/or Y sperm populations or were not repeatable. Only quantitative methods, which differentiate between X and Y sperm on the basis of total DNA and then apply flow cytometric sorting, have been able to separate the two sperm populations with high accuracy. Sperm are labelled with a DNA fluorescent dye. After recognition and electric charging, droplets containing single sperm are deflected and pushed into a collection medium from which they are further processed. This set-up allows the identification and selection of individual sperm into populations with sort purities above 90% of the desired characteristics. A critical point is the orientation of sperm in front of a UV laser, requiring modifications of a standard flow cytometer. A specially designed nozzle assembly hydrodynamically focusses the sperm-containing laminar core stream by means of a sheath fluid and the specific geometrics of the internal assembly parts.

Sperm sorting requires special liquid media. For example, a system based on Tris extender has been developed for bull and ram semen. Besides TRIS and other ingredients, the medium contains antioxidant scavengers to combat reactive oxygen species (ROS) and the Hoechst dye 33342. Porcine semen is handled in a similar way, except that the sample fluid is based on TRIS-HEPES. The sample fluid for stallion semen is generally based on skim milk, INRA 96 or Kenney’s modified Tyrode (KMT). Sorted samples are collected in tubes pre-filled with collection medium. The composition of this medium is, in most cases, a TEST-yolk extender, supplemented with seminal plasma in order to decapacitate the collected sperm.

In the animal industries, changing the sex ratio of offspring can increase genetic progress and productivity. Animal welfare can be improved, for example, by decreasing obstetric difficulties in cattle and minimising environmental impacts by eliminating the unwanted sex. Sexed sperm has been most widely applied in the dairy industry, and it is likely that this will continue, dependent on the market situation. For US dairy farmers, milk production and the sale of surplus calves and cull cows are as important as the production of replacement heifers on-farm. Outside the USA, at least in Europe and Australia, the demand for sexed sperm is potentially high for milk producers to optimise herd management. In these countries, the genetically superior cows will be bred with X chromosome-bearing sperm to produce genetically superior females with high milk yield and for (female) pregnant heifer export to other countries. Besides AI, embryo transfer (ET) can be performed after insemination with sex-sorted sperm. The combination of sex-sorted sperm with in vitro embryo production (IVEP) is advantageous, but much more difficult than ET, and depends on species, individual semen donor and composition of media used for in vitro maturation, in vitro fertilisation (IVF) and in vitro culture.

Commercialisation of sex-sorted ram sperm has, to date, been restricted by the dearth of commercial sorting facilities in Australia and New Zealand, although sheep are the only species in which sex-sorted frozen-thawed sperm have been shown to have comparable, if not superior, fertility to that of non-sorted frozen-thawed controls. Moreover, there has been little incentive to take up the technology due to low rates of adoption of genetic improvement programmes and/or artificial breeding technology.

In pigs, apart from economic benefits from faster growth rates, sex-sorted sperm would provide major welfare advantages through the elimination of surgical castration. However, the current method of individual sperm sorting is not efficient enough to satisfy the potential demands of the porcine AI industry, due to the high number of sperm required for each insemination. For special applications, such as building up nucleus herds or for research, sexed boar sperm can be utilised in combination with specially adapted insemination strategies. A significant reduction in the total sperm dose, maintaining fertility, can be achieved if porcine semen is deposited deep in the uterus in front of the utero-tubal junction or directly into the oviduct. Only very few sperm are required for IVF using in vivo or in vitro matured oocytes. Transferring both gametes into the oviduct at the same time (gamete intrafallopian transfer – GIFT) can be used as an alternative to IVF. Even fewer sperm are required for intracytoplasmic sperm injection (ICSI) than for all other IVF methods. However, to date, these methods require laparoscopy or laparotomy for insemination, embryo or gamete transfer, which are not practicable as alternatives to castration.

In horses the preferred gender depends on the breed and range of use. Stallion sperm have a low sorting index and their sortability varies, not only among stallions but also among ejaculates. Additionally, the freezability of stallion sperm varies widely. Insemination with sex-sorted sperm has to be performed by hysteroscopy deep into the uterine horn, limiting the technology to high-value animals.

The sex-sorting process can cause sperm damage. The main sources of damage are incubation with the fluorescent stain and exposure to the UV laser, mechanical forces and electrical charge.

Future sorting methods may avoid the need to identify quantitative differences between X and Y chromosome-bearing sperm. This would require a specific marker related to only one sex. A promising system is based on gold nanoparticles, which can be functionalised with DNA probes. After internalisation of the probe into the sperm head, the Y chromosome-bearing sperm can be identified due to their strong plasmon resonance, which is more stable than fluorescent dyes. Non-invasive coupling of a specific DNA probe with the intact DNA double strand by triplex binding and accumulation of nanoparticles has been achieved, but to date internalisation of the gold nanoparticles requires further research. Another promising new method promotes the naturally occurring genomic variations by gene editing. It is not a question of if, only when these methods will be ready for the market and replace the existing sexing techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abeydeera LR, Johnson LA, Welch GR, Wang WH, Boquest AC, Cantley TC, Rieke A, Day BN (1998) Birth of piglets preselected for gender following in vitro fertilization of in vitro matured pig oocytes by X and Y chromosome bearing spermatozoa sorted by high speed flow cytometry. Theriogenology 50(7):981–988

    Article  PubMed  CAS  Google Scholar 

  • Ali JI, Eldridge FE, Koo GC, Schanbacher BD (1990) Enrichment of bovine X-chromosome and Y-chromosome bearing sperm with monoclonal H-Y antibody fluorescence-activated cell sorter. Arch Androl 24(3):235–245

    Article  PubMed  CAS  Google Scholar 

  • Alkmin DV, Parrilla I, Tarantini T, del Olmo D, Vazquez JM, Martinez EA, Roca J (2016) Seminal plasma affects sperm sex sorting in boars. Reprod Fertil Dev 28(5):556–564

    Article  PubMed  CAS  Google Scholar 

  • Alminana C, Caballero I, Heath PR, Maleki-Dizaji S, Parrilla I, Cuello C, Gil MA, Vazquez JL, Vazquez JM, Roca J, Martinez EA, Holt WV, Fazeli A (2014) The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics 15:293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amann RP (1999) Issues affecting commercialization of sexed sperm. Theriogenology 52(8):1441–1457

    Article  PubMed  CAS  Google Scholar 

  • Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10(7):2543–2548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barcelo-Fimbres M, Seidel GE (2004) Optimizing sperm concentration to maximize monospermy and minimize polyspermy with bovine in vitro fertilization. Poult Sci 83:371

    Google Scholar 

  • Barcelo-Fimbres M, Campos-Chillon LF, Seidel GE (2011) In vitro fertilization using non-sexed and sexed bovine sperm: sperm concentration, sorter pressure, and bull effects. Reprod Domest Anim 46(3):495–502

    Article  PubMed  CAS  Google Scholar 

  • Barchanski A, Taylor U, Sajti CL, Gamrad L, Kues WA, Rath D, Barcikowski S (2015) Bioconjugated gold nanoparticles penetrate into spermatozoa depending on plasma membrane status. J Biomed Nanotechnol 11(9):1597–1607

    Article  PubMed  CAS  Google Scholar 

  • Barrios B, Fernández-Juan M, Muiño-Blanco T, Cebrián-Pérez JA (2005) Immunocytochemical localization and biochemical characterization of two seminal plasma proteins that protect ram spermatozoa against cold shock. J Androl 26:539–549

    Article  PubMed  CAS  Google Scholar 

  • Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MCG (2000) The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J Androl 21(6):895–902

    PubMed  CAS  Google Scholar 

  • Beal WE, White LM, Garner DL (1984) Sex ratio after insemination of bovine spermatozoa isolated using a bovine serum albumin gradient. J Anim Sci 58:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Beernink FJ, Ericsson RJ (1982) Male sex preselection through sperm isolation. Fertil Steril 38(4):493–495

    Article  PubMed  CAS  Google Scholar 

  • Beilby K, de Graaf S, Evans G, Maxwell WMC, Wilkening S, Wrenzycki C, Grupen C (2011) Quantitative mRNA expression in ovine blastocysts produced from X- and Y-chromosome bearing sperm, both in vitro and in vivo. Theriogenology 76(3):471–481

    Article  PubMed  CAS  Google Scholar 

  • Bennett D, Boyse EA (1973) Sex-ratio progeny of mice inseminated with sperm treated with H-Y antiserum. Nature 246(5431):308–309

    Article  PubMed  CAS  Google Scholar 

  • Bergeron A, Villemure M, Lazure C, Manjunath P (2005) Isolation and characterization of the major proteins of ram seminal plasma. Mol Reprod Dev 71:461–470

    Article  PubMed  CAS  Google Scholar 

  • Bergmann A, Taylor U, Rath D (2012a) Flow-cytometric evaluation of lectin binding moieties on porcine uterine epithelial cells. Reprod Domest Anim 47:77

    Article  Google Scholar 

  • Bergmann A, Taylor U, Rath D (2012b) Interactions of spermatozoa and uterine epithelial cells in the pig: a cell culture study. Reprod Domest Anim 47:486

    Google Scholar 

  • Bhattacharya BC (1962) Different sedimentation rates of X- and Y- sperm and the question of arbitrary sex determination. Zentralblatt für Wissenschaft & Zoologie 166:203–250

    CAS  Google Scholar 

  • Bhattacharya BC, Bangham AD, Cro RJ, Keynes RD, Rowson LE (1966) An attempt to predetermine the sex of calves by artificial insemination with spermatozoa separated by sedimentation. N ature 211:863

    CAS  Google Scholar 

  • Blecher SR, Howie R, Li S, Detmar J, Blahut LM (1999) A new approach to immunological sexing of sperm. Theriogenology 52(8):1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Blondin P, Beaulieu M, Fournier V, Morin N, Crawford L, Madan P, King WA (2009) Analysis of bovine sexed sperm for IVF from sorting to the embryo. Theriogenology 71(1):30–38

    Article  PubMed  CAS  Google Scholar 

  • Blottner S, Bostedt H, Mewes K, Pitra C (1994) Enrichment of bovine X-spermatozoa and Y-spermatozoa by free-flow electrophoresis. Zentralbl Veterinarmed A 41(6):466–474

    Article  PubMed  CAS  Google Scholar 

  • Boe-Hansen GB, Morris ID, Ersboll AK, Greve T, Christensen P (2005) DNA integrity in sexed bull sperm assessed by neutral Comet assay and sperm chromatin structure assay. Theriogenology 63(6):1789–1802

    Article  PubMed  CAS  Google Scholar 

  • Boklage CE (2005) The epigenetic environment: secondary sex ratio depends on differential survival in embryogenesis. Hum Reprod 20(3):583–587

    Article  PubMed  Google Scholar 

  • Bombardelli GD, Soares HF, Chebel RC (2016) Time of insemination relative to reaching activity threshold is associated with pregnancy risk when using sex-sorted semen for lactating Jersey cows. Theriogenology 85(3):533–539

    Article  PubMed  Google Scholar 

  • Bourdon RM, Brinks JS (1987a) Simulated efficiency of range beef-production. 1. Growth and milk-production. J Anim Sci 65(4):943–955

    Article  PubMed  CAS  Google Scholar 

  • Bourdon RM, Brinks JS (1987b) Simulated efficiency of range beef-production. 2. Fertility traits. J Anim Sci 65(4):956–962

    Article  PubMed  CAS  Google Scholar 

  • Bourdon RM, Brinks JS (1987c) Simulated efficiency of range beef-production. 3. Culling strategies and nontraditional management-systems. J Anim Sci 65(4):963–969

    Article  PubMed  CAS  Google Scholar 

  • Bucci D, Galeati G, Tamanini C, Vallorani C, Rodriguez-Gil JE, Spinaci M (2012) Effect of sex sorting on CTC staining, actin cytoskeleton and tyrosine phosphorylation in bull and boar spermatozoa. Theriogenology 77(6):1206–1216

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BR, Seidel GE, McCue PM, Schenk JL, Herickhoff LA, Squires EL (2000) Insemination of mares with low numbers of either unsexed or sexed spermatozoa. Theriogenology 53(6):1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Buchini S, Leumann CJ (2003) New nucleoside analogues for the recognition of pyrimidine-purine inversion sites. Nucleosides Nucleotides Nucleic Acids 22(5–8):1199–1201

    Article  PubMed  CAS  Google Scholar 

  • Byskov AG (1986) Differentiation of mammalian embryonic gonad. Physiol Rev 66(1):71–117

    Article  PubMed  CAS  Google Scholar 

  • Campos-Chillon LF, de la Torre JF (2003) Effect of concentration of sexed bovine sperm sorted at 40 and 50 psi on developmental capacity of in vitro produced embryos. Theriogenology 59:506 (abstract)

    Google Scholar 

  • Carvalho JO, Sartori R, Machado GM, Mourao GB, Dode MAN (2010) Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production. Theriogenology 74(9):1521–1530

    Article  PubMed  CAS  Google Scholar 

  • Carvalho JO, Michalczechen-Lacerda VA, Sartori R, Rodrigues FC, Bravim O, Franco MM, Dode MAN (2012) The methylation patterns of the IGF2 and IGF2R genes in bovine spermatozoa are not affected by flow-cytometric sex sorting. Mol Reprod Dev 79(2):77–84

    Article  PubMed  CAS  Google Scholar 

  • Catt JW (1996) Intracytoplasmic sperm injection (ICSI) and related technology. Anim Reprod Sci 42(1–4):239–250

    Article  Google Scholar 

  • Catt SL, Sakkas D, Bizzaro D, Bianchi PG, Maxwell WMC, Evans G (1997) Hoechst staining and exposure to UV laser during flow cytometric sorting does not affect the frequency of detected endogenous DNA nicks in abnormal and normal human spermatozoa. Mol Hum Reprod 3(9):821–825

    Article  PubMed  CAS  Google Scholar 

  • Centurion F, Vazquez JM, Calvete JJ, Roca J, Sanz L, Parilla I, Garcia EM, Martinez E (2003) Influence of porcine spermadhesins on the susceptibility of boar spermatozoa to high dilution. Biol Reprod 69:640–646

    Article  PubMed  CAS  Google Scholar 

  • Chang LB, Chou C-J, Shiu J-S, Tu P-A, Gao S-X, Peng S-Y, Wu S-C (2017) Artificial insemination of Holstein heifers with sex-sorted semen during the hot season in a subtropical region. Trop Anim Health Prod 49(6):1157–1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550

    Article  PubMed  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  PubMed  CAS  Google Scholar 

  • Clulow JR, Buss H, Evans G, Sieme H, Rath D, Morris LHA, Maxwell WMC (2012) Effect of staining and freezing media on sortability of stallion spermatozoa and their post-thaw viability after sex-sorting and cryopreservation. Reprod Domest Anim 47(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Clulow JR, Buss H, Sieme H, Rodger JA, Cawdell-Smith AJ, Evans G, Rath D, Morris LHA, Maxwell WMC (2008) Field fertility of sex-sorted and non-sorted frozen-thawed stallion spermatozoa. Anim Reprod Sci 108(3–4):287–297

    Article  PubMed  CAS  Google Scholar 

  • Cran DG (1997) Production of lambs by low dose intrauterine insemination with flow cytometrically sorted and unsorted semen. Theriogenology 47:267

    Article  Google Scholar 

  • Cran DG, Johnson LA (1996) The predetermination of embryonic sex using flow cytometrically separated X and Y spermatozoa. Hum Reprod Update 2(4):355–363

    Article  PubMed  CAS  Google Scholar 

  • Cran DG, Johnson LA, Polge C (1995) Sex preselection in cattle - a field trial. Vet Rec 136(19):495–496

    Article  PubMed  CAS  Google Scholar 

  • Cran DG, Johnson LA, Miller NGA, Cochrane D, Polge C (1993) Production of bovine calves following separation of X-chromosome and Y-chromosome bearing sperm and in vitro fertilization. Vet Rec 132(2):40–41

    Article  PubMed  CAS  Google Scholar 

  • Daniel C, Fahrenkrug S (2016) Genetic techniques for making animals with sortable sperm. Patent application “EP3003021”

    Google Scholar 

  • da Silva CMB, Ortega-Ferrusola C, Morrell JM, Martinez HR, Pena FJ (2016a) Flow cytometric chromosomal sex sorting of stallion spermatozoa induces oxidative stress on mitochondria and genomic DNA. Reprod Domest Anim 51(1):18–25

    Article  CAS  Google Scholar 

  • da Silva CMB, Ferrusola CO, Bolanos JMG, Davila MP, Martin-Munoz P, Morrell JM, Martinez HR, Pena FJ (2014) Effect of overnight staining on the quality of flow cytometric sorted stallion sperm: comparison with traditional protocols. Reprod Domest Anim 49(6):1021–1027

    Article  Google Scholar 

  • da Silva CMB, Ortega-Ferrusola C, Rodriguez AM, Bolanos JMG, Davila MP, Morrell JM, Martinez HR, Tapia JA, Aparicio IM, Pena FJ (2013) Sex sorting increases the permeability of the membrane of stallion spermatozoa. Anim Reprod Sci 138(3–4):241–251

    Article  CAS  Google Scholar 

  • da Silva CMB, Ortega-Ferrusola C, Morrell JM, Rodriguez Martinez H, Pena FJ (2016b) Flow cytometric chromosomal sex sorting of stallion spermatozoa induces oxidative stress on mitochondria and genomic DNA. Reprod Domest Anim 51(1):18–25

    Article  CAS  Google Scholar 

  • De Ambrogi M, Spinaci M, Galeati G, Tamanini C (2006) Viability and DNA fragmentation in differently sorted boar spermatozoa. Theriogenology 66(8):1994–2000

    Article  PubMed  CAS  Google Scholar 

  • De Cecco M, Spinaci M, Zannoni A, Bernardini C, Seren E, Forni M, Bacci ML (2010) Coupling sperm mediated gene transfer and sperm sorting techniques: a new perspective for swine transgenesis. Theriogenology 74(5):856–862

    Article  PubMed  Google Scholar 

  • de Graaf SP, Evans G, Maxwell WMC, O’Brien JK (2006) In vitro characteristics of fresh and frozen-thawed ram spermatozoa after sex sorting and re-freezing. Reprod Fertil Dev 18(8):867–874

    Article  PubMed  Google Scholar 

  • de Graaf SP, Beilby KH, Underwood SL, Evans G, Maxwell WMC (2009) Sperm sexing in sheep and cattle: the exception and the rule. Theriogenology 71(1):89–97

    Article  PubMed  Google Scholar 

  • de Graaf SP, Beilby K, O’Brien JK, Osborn D, Downing JA, Maxwell WMC, Evans G (2007a) Embryo production from superovulated sheep inseminated with sex-sorted ram spermatozoa. Theriogenology 67(1):550–555

    Article  PubMed  Google Scholar 

  • de Graaf SP, Evans G, Gillan L, Guerra MMP, Maxwell WMC, O’Brien JK (2007b) The influence of antioxidant, cholesterol and seminal plasma on the in vitro quality of sorted and non-sorted ram spermatozoa. Theriogenology 67(2):217–227

    Article  PubMed  CAS  Google Scholar 

  • de Graaf SP, Evans G, Maxwell WMC, Downing JA, O’Brien JK (2007c) Successful low dose insemination of flow cytometrically sorted ram spermatozoa in sheep. Reprod Domest Anim 42:648–653

    Article  PubMed  Google Scholar 

  • de Wagenaar B, Dekker S, de Boer HL, Bomer JG, Olthuis W, van den Berg A, Segerink LI (2016) Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells. Lab Chip 16(8):1514–1522

    Article  PubMed  CAS  Google Scholar 

  • Dean PN, Pinkel D, Mendelsohn ML (1978) Hydrodynamic orientation of sperm heads for flow cytometry. Biophys J 23:7–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • del Olmo D, Parrilla I, Sanchez-Osorio J, Gomis J, Angel MA, Tarantini T, Gil MA, Cuello C, Vazquez JL, Roca J, Vaquez JM, Martinez EA (2014) Successful laparoscopic insemination with a very low number of flow cytometrically sorted boar sperm in field conditions. Theriogenology 81(2):315–320

    Article  PubMed  Google Scholar 

  • de Lamirande E, Leclerc P, Gagnon C (1997) Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3(3):175–194

    Article  PubMed  Google Scholar 

  • Dmowski WP, Gaynor L, Rao R, Lawrence M, Scommegna A (1979) Use of albumin gradients for X-sperm and Y-sperm separation and clinical experience with male sex preselection. Fertil Steril 31(1):52–57

    Article  PubMed  CAS  Google Scholar 

  • Downing TW, Garner DL, Ericsson SA, Redelman D (1991) Metabolic toxicity of fluorescent stains on thawed cryopreserved bovine sperm cells. J Histochem Cytochem 39(4):485–489

    Article  PubMed  CAS  Google Scholar 

  • Durand RE, Olive PL (1982) Cytotoxicity, mutagenicity and DNA damage by Hoechst 33342. J Histochem Cytochem 30:111–116

    Article  PubMed  CAS  Google Scholar 

  • Eggers S, Sinclair A (2012) Mammalian sex determination-insights from humans and mice. Chromosom Res 20(1):215–238

    Article  CAS  Google Scholar 

  • Eggers S, Ohnesorg T, Sinclair A (2014) Genetic regulation of mammalian gonad development. Nat Rev Endocrinol 10(11):673–683

    Article  PubMed  CAS  Google Scholar 

  • Engelmann U, Krassnigg F, Schatz H, Schill W-B (1988) Separation of human X and Y spermatozoa by free-flow electrophoresis. Gamete Res 19(2):151–160

    Article  PubMed  CAS  Google Scholar 

  • Erickson RP, Lewis SE, Butley M (1981) Is haploid gene-expression possible for sperm antigens. J Reprod Immunol 3(4):195–217

    Article  PubMed  CAS  Google Scholar 

  • Ericsson RJ, Langevin CN, Nishino M (1973) Isolation of fractions rich in human Y sperm. Nature 246(5433):421–424

    Article  PubMed  CAS  Google Scholar 

  • Ettema JF (2007) Economic opportunities for sexed semen on commercial dairies. Western Dairy News 7(3):67–68

    Google Scholar 

  • Everts M, Saini V, Leddon JL, Kok RJ, Stoff-Khalili M, Preuss MA, Millican CL, Perkins G, Brown JM, Bagaria H, Nikles DE, Johnson DT, Zharov VP, Curiel DT (2006) Covalently linked au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 6(4):587–591

    Article  PubMed  CAS  Google Scholar 

  • Flaherty SP, Michalowska J, Swann NJ, Dmowski WP, Matthews CD, Aitken RJ (1997) Albumin gradients do not enrich Y-bearing human spermatozoa. Hum Reprod 12(5):938–942

    Article  PubMed  CAS  Google Scholar 

  • Feugang JM, Youngblood RC, Greene JM, Fahad AS, Monroe WA, Willard ST, Ryan PL (2012) Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa. J Nanobiotechnol 10:45

    Article  CAS  Google Scholar 

  • Feugang JM (2017) Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev 84(9):832–841

    Article  PubMed  CAS  Google Scholar 

  • Frijters ACJ, Mullaart E, Roelof RMG, van Hoorne RP, Moreno JF, Moreno O, Merton JS (2009) What affects fertility of sexed bull semen more, low sperm dosage or the sorting process? Theriogenology 71(1):64–67

    Article  PubMed  CAS  Google Scholar 

  • Fulwyler MJ (1977) Hydrodynamic orientation of cells. J Histochem Cytochem 25(7):781–783

    Article  PubMed  CAS  Google Scholar 

  • Gao HJ, Shi WD, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 102(27):9469–9474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia EM, Vázquez JM, Calvete JJ, Sanz L, Caballero I, Parilla I, Gil MA, Roca J, Martinez EA (2006) Dissecting the protective effect of the seminal plasma sperm adhesin PSP-I/PSP-II on boar sperm functionality. J Androl 27:434–442

    Article  PubMed  CAS  Google Scholar 

  • Garner DL (2006) Flow cytometric sexing of mammalian sperm. Theriogenology 65(5):943–957

    Article  PubMed  Google Scholar 

  • Garner DL (2009) Hoechst 33342: the dye that enabled differentiation of living X-and Y-chromosome bearing mammalian sperm. Theriogenology 71(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Garner DL, Suh TK (2002) Effect of Hoechst 33342 staining and Laser illumination on the viability of sex-sorted bovine sperm. Theriogenology 57:746 abstract

    Google Scholar 

  • Garner DL, Seidel GE (2008) History of commercializing sexed semen for cattle. Theriogenology 69(7):886–895

    Article  PubMed  CAS  Google Scholar 

  • Garner DL, Gledhill BL, Pinkel D, Lake S, Stephenson D, Vandilla MA, Johnson LA (1983) Quantification of the X-chromosome-bearing and Y-chromosome-bearing spermatozoa of domestic-animals by flow-cytometry. Biol Reprod 28(2):312–321

    Article  PubMed  CAS  Google Scholar 

  • Gibb Z, Lambourne SR, Aitken RJ (2012) Do spermatozoa from fertile thoroughbred stallions live fast and die young? Reprod Domest Anim 47:587–588

    Google Scholar 

  • Gibb Z, Butler TJ, Morris LHA, Maxwell WMC, Grupen CG (2013) Quercetin improves the post-thaw characteristics of cryopreserved sex-sorted and non sorted stallion sperm. Theriogenology 79(6):1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Gledhill BL, Lake S, Steinmetz LL, Gray JW, Crawford JR, Dean PN, Vandilla MA (1976) Flow microfluorometric analysis of sperm DNA content - effect of cell-shape on fluorescence distribution. J Cell Physiol 87(3):367–375

    Article  PubMed  CAS  Google Scholar 

  • Grossfeld R, Klinc P, Sieg B, Rath D (2005) Production of piglets with sexed semen employing a non-surgical insemination technique. Theriogenology 63(8):2269–2277

    Article  PubMed  CAS  Google Scholar 

  • Guthrie HD, Johnson LA, Garrett WM, Welch GR, Dobrinsky JR (2002) Flow cytometric sperm sorting: effects of varying laser power on embryo development in swine. Mol Reprod Dev 61(1):87–92

    Article  PubMed  CAS  Google Scholar 

  • Hancock RJT, Duncan D, Carey S, Cockett ATK, May A (1983) Anti-sperm antibodies, Hla antigens, and semen analysis. Lancet 2(8354):847–848

    Article  PubMed  CAS  Google Scholar 

  • Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortés L, McElreavey K, Lindsay S, Robson S, Bullen P, Ostrer H, Wilson DI (2000) SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev 91(1–2):403–407

    Article  PubMed  CAS  Google Scholar 

  • Heer P (2007) Anpassung der Konservierungsprozesse für Hengstsperma an die Beltsville Sperm Sexing Technology. (Adaptation of cryo-preservation of stallion semen to the Beltsville Sperm Sexing Technology) Dissertation, Veterinary University, Hannover, Germany

    Google Scholar 

  • Heisterkamp A, Lorbeer R, Masterrind GmbH, Meyer H, Rath D (2015) Apparatus and method for selecting particles. Pat.Appl.: US000009034260

    Google Scholar 

  • Hendriksen PJM, Tieman M, Vanderlende T, Johnson LA (1993) Binding of anti-H-Y monoclonal-antibodies to separated X-chromosome and Y-chromosome bearing porcine and bovine sperm. Mol Reprod Dev 35(2):189–196

    Article  PubMed  CAS  Google Scholar 

  • Hohenboken WD (1999) Applications of sexed semen in cattle production. Theriogenology 52(8):1421–1433

    Article  PubMed  CAS  Google Scholar 

  • Hollinshead FK, O’Brien JK, Maxwell WMC, Evans G (2002) Production of lambs of predetermined sex after the insemination of ewes with low numbers of frozen-thawed sorted X- or Y-chromosome-bearing spermatozoa. Reprod Fertil Dev 14(8):503–508

    Article  PubMed  CAS  Google Scholar 

  • Hoogsteen K (1963) Crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallogr 16(9):907–916

    Article  CAS  Google Scholar 

  • Inaba Y, Abe R, Geshi M, Matoba S, Nagai T, Somfai T (2016) Sex-sorting of spermatozoa affects developmental competence of in vitro fertilized oocytes in a bull-dependent manner. J Reprod Dev 62(5):451–456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inguran LLC, US (2013a) Device for high throughput sperm sorting. Pat. Appl.: US020140273192

    Google Scholar 

  • Inguran LLC, US (2013b) Device for high throughput sperm sorting. Pat. Appl.: US020140273179

    Google Scholar 

  • Inguran LLC, US (2013c) Methods for high throughput sperm sorting. Pat. Appl.: US020140273059

    Google Scholar 

  • Jacobs PA, Ross A (1966) Structural abnormalities of the Y chromosome in man. Nature 210(5034):352–354

    Article  PubMed  CAS  Google Scholar 

  • Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53(11):2002–2009

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA (1988) Flow cytometric determination of sperm sex-ratio in semen purportedly enriched for X-bearing or Y-bearing sperm. Theriogenology 29(1):265–265

    Article  Google Scholar 

  • Johnson LA (1991) Sex preselection in swine - altered sex-ratios in offspring following surgical insemination of flow sorted X-bearing and Y-bearing sperm. Reprod Domest Anim 26(6):309–314

    Article  Google Scholar 

  • Johnson LA (1997) Advances in gender preselection in swine. J Reprod Fertil Suppl 52:255–266

    PubMed  CAS  Google Scholar 

  • Johnson LA (2000) Sexing mammalian sperm for production of offspring: the state-of-the-art. Anim Reprod Sci 61:93–107

    Article  Google Scholar 

  • Johnson LA, Pinkel D (1986) Modification of a laser-based flow cytometer for high-resolution DNA analysis of mammalian spermatozoa. Cytometry 7(3):268–273

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Clarke RN (1988) Flow sorting of X-chromosome-bearing and Y-chromosome-bearing mammalian sperm - activation and pronuclear development of sorted bull, boar, and ram sperm microinjected into hamster oocytes. Gamete Res 21(4):335–343

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Welch GR (1999) Sex preselection: high-speed flow cytometric sorting of X and Y sperm for maximum efficiency. Theriogenology 52(8):1323–1341

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Flook JP, Look MV (1987) Flow cytometry of X and Y chromosome-bearing sperm for DNA using an improved preparation method and staining with Hoechst 33342. Gamete Res 17(3):203–212

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Flook JP, Hawk HW (1989) Sex preselection in rabbits - live births from X-sperm and Y-sperm separated by DNA and cell sorting. Biol Reprod 41(2):199–203

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Rath D, Vazquez JM, Maxwell WMC, Dobrinsky JR (2005) Preselection of sex of offspring in swine for production: current status of the process and its application. Theriogenology 63(2):615–624

    Article  PubMed  Google Scholar 

  • Johnson MD, Fresco JR (1999) Third-strand in situ hybridization (TISH) to non-denatured metaphase spreads and interphase nuclei. Chromosoma 108(3):181–189

    Article  PubMed  CAS  Google Scholar 

  • Junge S, Taylor U, Schuberth HJ, Baulain U, Rath D (2010) Influence of inseminate components on the presence of leukocytes and spermatozoa in the porcine uterus 2 hours after artificial insemination (AI). Reprod Domest Anim 45:66

    Google Scholar 

  • Junge S, Taylor U, Schuberth HJ, Guenther J, Baulain U, Rath D (2011) Seminal plasma and spermatozoa modulate gene expression in the porcine uterus. Reprod Domest Anim 46:105

    Google Scholar 

  • Junge S, Taylor U, Bergmann A, Schuberth HJ, Guenther J, Baulein U, Rath D (2012) Modulated gene expression in the porcine uterus after contact with seminal plasma and spermatozoa - results of a microarray study. Reprod Domest Anim 47:29

    Article  CAS  Google Scholar 

  • Kaneko S, Yamaguchi J, Kobayashi T, Iizuka R (1983) Separation of human X-bearing and Y-bearing sperm using percoll density gradient centrifugation. Fertil Steril 40(5):661–665

    Article  PubMed  CAS  Google Scholar 

  • Kawarasaki T, Welch GR, Long CR, Yoshida M, Johnson LA (1998) Verification of flow cytometrically-sorted X- and Y-bearing porcine spermatozoa and reanalysis of spermatozoa for DNA content using the fluorescence in situ hybridization (FISH) technique. Theriogenology 50(4):625–635

    Article  PubMed  CAS  Google Scholar 

  • Klinc P, Rath D (2005) State of the art and perspectives of application of sorted sperm cells in farm animals. Züchtungskunde 77(2–3):218–229

    Google Scholar 

  • Klinc P, Rath D (2007) Reduction of oxidative stress in bovine spermatozoa during flow cytometric sorting. Reprod Domest Anim 42(1):63–67

    Article  PubMed  CAS  Google Scholar 

  • Klinc P, Frese D, Osmers H, Rath D (2007) Insemination with sex sorted fresh bovine spermatozoa processed in the presence of antioxidative substances. Reprod Domest Anim 42(1):58–62

    Article  PubMed  CAS  Google Scholar 

  • Knop K, Hoffmann N, Rath D, Sieme H (2005) Effects of cushioned centrifugation technique on sperm recovery and sperm quality in stallions with good and poor semen freezability. Anim Reprod Sci 89(1–4):294–297

    PubMed  CAS  Google Scholar 

  • Knowlton SM, Sadasivam M, Tasoglu S (2015) Microfluidics for sperm research. Trends Biotechnol 33(4):221–229

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi J, Oguro H, Uchida H, Kohsaka T, Sasada H, Sato E (2004) Assessment of bovine X- and Y-bearing spermatozoa in fractions by discontinuous Percoll gradients with rapid fluorescence in situ hybridization. J Reprod Dev 50(4):463–469

    Article  PubMed  Google Scholar 

  • Koundouros S, Verma P (2012) Significant enrichment of Y-bearing chromosome human spermatozoa using a modified centrifugation technique. Int J Androl 35(6):880–886

    Article  PubMed  CAS  Google Scholar 

  • Krausz C, Casamonti E (2017) Spermatogenic failure and the Y chromosome. Hum Genet 136(5):637–655

    Article  PubMed  CAS  Google Scholar 

  • Krisher RL, Wheeler MB (2010) Towards the use of microfluidics for individual embryo culture. Reprod Fertil Dev 22(1):32–39

    Article  PubMed  CAS  Google Scholar 

  • Krueger C, Rath D, Johnson LA (1999) Low dose insemination in synchronized gilts. Theriogenology 52(8):1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Kurykin J, Hallap T, Jalakas M, Padrik P, Kaart T, Johannisson A, Jaakma U (2016) Effect of insemination-related factors on pregnancy rate using sexed semen in Holstein heifers. Czeh J Anim Sci 61(12):568–577

    Article  CAS  Google Scholar 

  • Leahy T, Celi P, Bathgate R, Evans G, Maxwell WMC, Marti JI (2010) Flow-sorted ram spermatozoa are highly susceptible to hydrogen peroxide damage but are protected by seminal plasma and catalase. Reprod Fertil Dev 22(7):1131–1140

    Article  PubMed  CAS  Google Scholar 

  • Li JC, Zhu SB, He XJ, Sun R, He QY, Gan Y, Liu SJ, Funahashi H, Li YB (2016) Application of a microfluidic sperm sorter to in vitro production of dairy cattle sex-sorted embryos. Theriogenology 85(7):1211–1218

    Article  PubMed  Google Scholar 

  • Libbus BL, Perreault SD, Johnson LA, Pinkel D (1987) Incidence of chromosome-aberrations in mammalian sperm stained with Hoechst-33342 and UV-laser irradiated during flow sorting. Mutat Res 182(5):265–274

    Article  PubMed  CAS  Google Scholar 

  • Lindsey AC, Varner DD, Seidel GE, Bruemmer JE, Squires EL (2005) Hysteroscopic or rectally guided, deep-uterine insemination of mares with spermatozoa stored 18 h at either 5 degrees C or 15 degrees C prior to flow-cytometric sorting. Anim Reprod Sci 85(1–2):125–130

    Article  PubMed  CAS  Google Scholar 

  • Lopez SR, de Souza JC, Gonzalez JZ, Sanchez AD, Romero-Aguirregomezcorta J, de Carvalho RR, Rath D (2013) Use of sex-sorted and unsorted frozen/thawed sperm and in vitro fertilization events in bovine oocytes derived from ultrasound-guided aspiration. Revista Brasileira De Zootecnia 42(10):721–727

    Article  Google Scholar 

  • Lu KH, Seidel GE (2004) Effects of heparin and sperm concentration on cleavage and blastocyst development rates of bovine oocytes inseminated with flow cytometrically-sorted sperm. Theriogenology 62(5):819–830

    Article  PubMed  CAS  Google Scholar 

  • Lu KH, Cran DG, Seidel GE (1999) In vitro fertilization with flow-cytometrically-sorted bovine sperm. Theriogenology 52(8):1393–1405

    Article  PubMed  CAS  Google Scholar 

  • Mancini R, Sieg B, Rath D (2013) Bull sperm motility and molecular kinetic of Hoechst dye are effected by the buffer system of extenders. Reprod Domest Anim 48:82

    Google Scholar 

  • Mandal D, Maran A, Yaszemski MJ, Bolander ME, Sarkar G (2009) Cellular uptake of gold nanoparticles directly cross-linked with carrier peptides by osteosarcoma cells. J Materials Sci Mater Med 20(1):347–350

    Article  CAS  Google Scholar 

  • Manger M, Bostedt H, Schill WB, Mileham AJ (1997) Effect of sperm motility on separation of bovine X- and Y-bearing spermatozoa by means of free-flow electrophoresis. Andrologia 29(1):9–15

    Article  PubMed  CAS  Google Scholar 

  • Mari G, Bucci D, Love CC, Mislei B, Rizzato G, Giaretta E, Merlo B, Spinaci M (2015) Effect of cushioned or single layer semen centrifugation before sex sorting on frozen stallion semen quality. Theriogenology 83(6):953–958

    Article  PubMed  CAS  Google Scholar 

  • Martinez EA, Vazquez JM, Roca J, Lucas X, Gil MA, Parrilla I, Vazquez JL, Day BN (2001) Successful non-surgical deep intrauterine insemination with small numbers of spermatozoa in sows. Reproduction 122(2):289–296

    Article  PubMed  CAS  Google Scholar 

  • Martinez EA, Vazquez JM, Parrilla I, Cuello C, Gil MA, Rodriguez-Martinez H, Roca J, Vazquez JL (2006) Incidence of unilateral fertilizations after low dose deep intrauterine insemination in spontaneously ovulating sows under field conditions. Reprod Domest Anim 41(1):41–47

    Article  PubMed  CAS  Google Scholar 

  • Matthijs A, Engel B, Woelders H (2003) Neutrophil recruitment and phagocytosis of boar spermatozoa after artificial insemination of sows, and the effects of inseminate volume, sperm dose and specific additives in the extender. Reproduction 125(3):357–367

    Article  PubMed  CAS  Google Scholar 

  • Matthijs A, Harkema W, Engel B, Woelders H (2000) In vitro phagocytosis of boar spermatozoa by neutrophils from peripheral blood of sows. J Reprod Fertil 120(2):265–273

    Article  PubMed  CAS  Google Scholar 

  • Maxwell WMC, Johnson LA (1997) Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling, or cryopreservation. Mol Reprod Dev 46(3):408–418

    Article  PubMed  CAS  Google Scholar 

  • Maxwell WMC, Johnson LA (1999) Physiology of spermatozoa at high dilution rates: the influence of seminal plasma. Theriogenology 52:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Maxwell WMC, Long CR, Johnson LA, Dobrinsky JR, Welch GR (1998) The relationship between membrane status and fertility of boar spermatozoa after flow cytometric sorting in the presence or absence of seminal plasma. Reprod Fertil Dev 10:433–440

    Article  PubMed  CAS  Google Scholar 

  • Maxwell WMC, Evans G, Hollinshead FK, Bathgate R, de Graaf SP, Eriksson BM, Gillan L, Morton KM, O'Brien JK (2004) Integration of sperm sexing technology into the ART toolbox. Anim Reprod Sci 82-3:79–95

    Article  Google Scholar 

  • Maxwell WMC, de Graaf SP, El-Hajj Ghaoui R, Evans G (2007) Seminal plasma effects on the sperm handling and female fertility. In: Juengel JL, Murray JF, Smith MF (eds) Reproduction in domestic ruminants VI. Nottingham University Press, Nottingham, pp 13–37

    Google Scholar 

  • McKenzie F, Faulds K, Graham D (2008) LNA functionalized gold nanoparticles as probes for double stranded DNA through triplex formation. Chem Commun 20:2367–2369

    Article  CAS  Google Scholar 

  • McNutt TL, Johnson LA (1996) Flow cytometric sorting of sperm: influence on fertilization and embryo fetal development in the rabbit. Mol Reprod Dev 43(2):261–267

    Article  PubMed  CAS  Google Scholar 

  • Michl J (2014) Ultrastrukturelle Charakterisierung geschlechtsspezifisch sortierter Spermien. (Ultrastructural characterization of sex sorted sperm). Dissertation, University of Goettingen, Germany

    Google Scholar 

  • Mittwoch U (2013) Sex determination. EMBO Rep 14(7):588–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moce E, Graham JK, Schenk JL (2006) Effect of sex-sorting on the ability of fresh and cryopreserved bull sperm to undergo an acrosome reaction. Theriogenology 66(4):929–936

    Article  PubMed  CAS  Google Scholar 

  • Morris LHA, Hunter RHF, Allen WR (2000) Hysteroscopic insemination of small numbers of spermatozoa at the uterotubal junction of preovulatory mares. J Reprod Fertil 118(1):95–100

    Article  PubMed  CAS  Google Scholar 

  • Morton KM, Catt SL, Hollinshead FK, Maxwell WMC, Evans G (2004) Production of lambs after the transfer of fresh and cryopreserved in vitro produced embryos from prepubertal lamb oocytes and unsorted and sex-sorted frozen-thawed spermatozoa. Reprod Domest Anim 39(6):454–461

    Article  PubMed  CAS  Google Scholar 

  • Morton KM, Herrmann D, Sieg B, Struckmann C, Maxwell WMC, Rath D, Evans G, Lucas-Hahn A, Niemann H, Wrenzycki C (2007) Altered mRNA expression patterns in bovine blastocysts after fertilisation in vitro using flow-cytometrically sex-sorted sperm. Mol Reprod Dev 74(8):931–940

    Article  PubMed  CAS  Google Scholar 

  • Moruzzi JF (1979) Selecting a mammalian-species for the separation of X-chromosome-bearing and Y-chromosome-bearing spermatozoa. J Reprod Fertil 57(2):319–323

    Article  PubMed  CAS  Google Scholar 

  • Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2(8):1639–1644

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Kuhla B, Flachowsky G (2011) Perspectives for feed-efficient animal production. J Anim Sci 89(12):4344–4363

    Article  PubMed  CAS  Google Scholar 

  • Palma GA, Olivier NS, Neumuller C, Sinowatz F (2008) Effects of sex-sorted spermatozoa on the efficiency of in vitro fertilization and ultrastructure of in vitro produced bovine blastocysts. Anat Histol Embryol 37(1):67–73

    PubMed  CAS  Google Scholar 

  • Panarace M, Pellegrini RO, Basualdo MO, Bele M, Ursino DA, Cisterna R, Desimone G, Rodriguez E, Medina MJ (2014) First field results on the use of stallion sex-sorted semen in a large-scale embryo transfer program. Theriogenology 81(4):520–525

    Article  PubMed  CAS  Google Scholar 

  • Parrilla I, Vazquez JM, Cuello C, Gil MA, Roca J, Di Berardino D, Martinez EA (2004) Hoechst 33342 stain and U.V. Laser exposure do not induce genotoxic effects in flow-sorted boar spermatozoa. Reproduction 128(5):615–621

    Article  PubMed  CAS  Google Scholar 

  • Pelliccione F, Micillo A, Cordeschi G, D’Angeli A, Necozione S, Gandini L, Lenzi A, Francavilla F, Francavilla S (2011) Altered ultrastructure of mitochondrial membranes is strongly associated with unexplained asthenozoospermia. Fertil Steril 95(2):641–646

    Article  PubMed  CAS  Google Scholar 

  • Petersen S, Barchanski A, Taylor U, Klein S, Rath D, Barcikowski S (2011) Penetratin-conjugated gold nanoparticles - design of cell-penetrating nanomarkers by femtosecond laser ablation. J Phys Chem C 115(12):5152–5159

    Article  CAS  Google Scholar 

  • Pinkel D, Garner DL, Gledhill BL, Lake S, Stephenson D, Johnson LA (1985) Flow cytometric determination of the proportions of X-chromosome-bearing and Y-chromosome-bearing sperm in samples of purportedly separated bull sperm. J Anim Sci 60(5):1303–1307

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Lake S, Gledhill BL, Vandilla MA, Stephenson D, Watchmaker G (1982) High-resolution DNA content measurements of mammalian sperm. Cytometry 3(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Probst S, Rath D (2003) Production of piglets using intracytoplasmic sperm injection (ICSI) with flowcytometrically sorted boar semen and artificially activated oocytes. Theriogenology 59(3–4):961–973

    Article  PubMed  Google Scholar 

  • Pyrzak R (1994) Separation of X-bearing and Y-bearing human spermatozoa using albumin gradients. Hum Reprod 9(10):1788–1790

    Article  PubMed  CAS  Google Scholar 

  • Polge C, Salamon S, Wilmut I (1970) Fertilizing capacity of frozen boar semen following surgical insemination. Vet Rec 87:424–428

    Article  PubMed  CAS  Google Scholar 

  • Quesnel FN, Wilcox CJ, Simerl NA, Sharma AK, Thatcher WW (1995) Effects of fetal sex and sire and other factors on periparturient and postpartum performance of dairy cattle. Braz J Genet 18(4):541–545

    Google Scholar 

  • Rath D, Johnson LA (2008) Application and commercialization of flow cytometrically sex-sorted semen. Reprod Domest Anim 43:338–346

    Article  PubMed  Google Scholar 

  • Rath D, Sieme H (2003) Sexing of stallion semen. Pferdeheilkunde 19(6):675–676

    Google Scholar 

  • Rath D, Niemann H, Johnson LA (1994a) Gamete intrafallopian transfer (Gift), an alternative to in-vitro fertilization procedures for special applications. Reprod Domest Anim 29(5):349–351

    Article  Google Scholar 

  • Rath D, Johnson LA, Welch GR (1993) In vitro culture of porcine embryos: development to blastocysts after in vitro fertilization (IVF) with flow cytometrically sorted and unsorted semen. Theriogenology 39:293

    Article  Google Scholar 

  • Rath D, Johnson LA, Welch GR, Niemann H (1994b) Successful gamete intrafallopian transfer (Gift) in the porcine. Theriogenology 41(5):1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Rath D, Moench-Tegeder G, Taylor U, Johnson LA (2009) Improved quality of sex-sorted sperm: a prerequisite for wider commercial application. Theriogenology 71(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Rath D, Johnson LA, Dobrinsky JR, Welch GR, Niemann H (1997) Production of piglets preselected for sex following in vitro fertilization with X and Y chromosome-bearing spermatozoa sorted by flow cytometry. Theriogenology 47(4):795–800

    Article  PubMed  CAS  Google Scholar 

  • Rath D, Long CR, Dobrinsky JR, Welch GR, Schreier LL, Johnson LA (1999) In vitro production of sexed embryos for gender preselection: high-speed sorting of X-chromosome-bearing sperm to produce pigs after embryo transfer. J Anim Sci 77(12):3346–3352

    Article  PubMed  CAS  Google Scholar 

  • Rath D, Tiedemann D, Gamrad L, Johnson LA, Klein S, Kues W, Mancini R, Rehbock C, Taylor U, Barcikowski S (2015) Sex-sorted boar sperm - an update on related production methods. Reprod Domest Anim 50:56–60

    Article  PubMed  Google Scholar 

  • Rath D, Barcikowski S, de Graaf S, Garrels W, Grossfeld R, Klein S, Knabe W, Knorr C, Kues W, Meyer H, Michl J, Moench-Tegeder G, Rehbock C, Taylor U, Washausen S (2013) Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction 145(1):R15–R30

    Article  PubMed  CAS  Google Scholar 

  • Rehbock C, Jakobi J, Gamrad L, van der Meer S, Tiedemann D, Taylor U, Kues W, Rath D, Barcikowski S (2014) Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Beilstein J Nanotechnol 5:1523–1541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rens W, Welch GR, Johnson LA (1998) A novel nozzle for more efficient sperm orientation to improve sorting efficiency of X and Y chromosome-bearing sperm. Cytometry 33(4):476–481

    Article  PubMed  CAS  Google Scholar 

  • Roca J, Carvajal G, Lucas X, Vazquez JM, Martinez EA (2003) Fertility of weaned sows after deep intrauterine insemination with a reduced number of frozen-thawed spermatozoa. Theriogenology 60(1):77–87

    Article  PubMed  Google Scholar 

  • Roca J, Vazquez JM, Gil MA, Cuello C, Parrilla I, Martinez EA (2006) Challenges in pig artificial insemination. Reprod Domest Anim 41:43–53

    Article  PubMed  Google Scholar 

  • Roca J, Parrilla I, Rodriguez-Martinez H, Gil MA, Cuello C, Vazquez JM, Martinez EA (2011) Approaches towards efficient use of boar semen in the pig industry. Reprod Domest Anim 46:79–83

    Article  PubMed  Google Scholar 

  • Roelofs JB, Bouwman EB, Pedersen HG, Rasmussen ZR, Soede NM, Thomsen PD, Kemp B (2006) Effect of time of artificial insemination on embryo sex ratio in dairy cattle. Anim Reprod Sci 93(3–4):366–371

    Article  PubMed  CAS  Google Scholar 

  • Rohde W, Porstmann T, Prehn S, Dorner G (1975) Gravitational pattern of Y-bearing human spermatozoa in density gradient centrifugation. J Reprod Fertil 42(3):587–591

    Article  PubMed  CAS  Google Scholar 

  • Rorie RW (1999) Effect of timing of artificial insemination on sex ratio. Theriogenology 52(8):1273–1280

    Article  PubMed  CAS  Google Scholar 

  • Rorie RW, Lester TD, Lindsey BR, McNew RW (1999) Effect of timing of artificial insemination on gender ratio in beef cattle. Theriogenology 52(6):1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Ross A, Robinson JA, Evans HJ (1975) Failure to confirm separation of X-bearing and Y-bearing human sperm using Bsa gradients. Nature 253(5490):354–355

    Article  PubMed  CAS  Google Scholar 

  • Salamon S, Visser D (1973) Fertility after surgical insemination with frozen boar semen. Aust J Biol Sci 27(5):499–504

    Article  Google Scholar 

  • Salmaso S, Caliceti P, Amendola V, Meneghetti M, Magnusson JP, Pasparakis G, Alexander C (2009) Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer. J Mater Chem 19(11):1608–1615

    Article  CAS  Google Scholar 

  • Samper JC, Morris L, Pena FJ, Plough TA (2012) Commercial breeding with sexed stallion semen: reality or fiction? J Equine Vet 32(8):471–474

    Article  Google Scholar 

  • Sander S (2016) Luminometrische Verlaufskontrolle des ATP-Gehaltes von flowzytometrisch geschlechtsdifferenzierten bovinen Spermien. (Luminometrical control of ATP content in flow cytometrically sex sorted bovine sperm). Dissertation, Veterinary University Hannover, Germany

    Google Scholar 

  • Sato T, Sakuma T, Yokonishi T, Katagiri K, Kamimura S, Ogonuki N, Ogura A, Yamamoto T, Ogawa T (2015) Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Cas9. Stem Cell Rep 5(1):75–82

    Article  CAS  Google Scholar 

  • Sauer H, Bekhite MM, Hescheler J, Wartenberg M (2005) Redox control of angiogenic factors and CD31-positive vessel-like structures in mouse embryonic stem cells after direct current electrical field stimulation. Exp Cell Res 304(2):380–390

    Article  PubMed  CAS  Google Scholar 

  • Schenk JL, Seidel GE (2007) Pregnancy rates in cattle with cryopreserved sexed spermatozoa; effects of laser intensity, staining conditions and catalase. Reprod Domes Ruminants VI Soc Reprod Fertil 64:165–167

    Article  CAS  Google Scholar 

  • Schenk JL, Suh TK, Seidel GE (2006) Embryo production from superovulated cattle following insemination of sexed sperm. Theriogenology 65(2):299–307

    Article  PubMed  CAS  Google Scholar 

  • Schilling E, Thormaehlen D (1977) Enrichment of human X-chromosome and Y-chromosome bearing spermatozoa by density gradient centrifugation. Andrologia 9(1):106–110

    Article  PubMed  CAS  Google Scholar 

  • Schulte RT, Chung YK, Ohl DA, Takayama S, Smith GD (2007) Microfluidic sperm sorting device provides a novel method for selecting motile sperm with higher DNA integrity. Fertil Steril 88:S76–S76

    Article  Google Scholar 

  • Seidel GE, Garner DL (2002) Current status of sexing mammalian spermatozoa. Reproduction 124(6):733–743

    Article  PubMed  CAS  Google Scholar 

  • Seidel GE (2003a) Sexing mammalian sperm--intertwining of commerce, technology, and biology. Anim Reprod Sci 79(3–4):145–156

    Article  PubMed  Google Scholar 

  • Seidel GE (2003b) Economics of selecting for sex: the most important genetic trait. Theriogenology 59(2):585–598

    Article  PubMed  Google Scholar 

  • Seidel GE, Whittier JC (2015) BEEF SPECIES SYMPOSIUM: beef production without mature cows. J Anim Sci 93(9):4244–4251

    Article  PubMed  CAS  Google Scholar 

  • Seidel GE, Schenk JL, Herickhoff LA, Doyle SP, Brink Z, Green RD, Cran DG (1999) Insemination of heifers with sexed sperm. Theriogenology 52(8):1407–1420

    Article  PubMed  Google Scholar 

  • Seidel GE, Allen CH, Johnson LA, Holland MD, Brink Z, Welch GR, Graham JK, Cattell MB (1997) Uterine horn insemination of heifers with very low numbers of nonfrozen and sexed spermatozoa. Theriogenology 48(8):1255–1264

    Article  Google Scholar 

  • Seidman MM, Glazer PM (2003) The potential for gene repair via triple helix formation. J Clin Investig 112(4):487–494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sevinc A (1968) Experiments on sex control by electrophoretic separation of spermatozoa in rabbit. J Reprod Fertil 16(1):7

    Article  PubMed  CAS  Google Scholar 

  • Sharpe JC, Evans KM (2009) Advances in flow cytometry for sperm sexing. Theriogenology 71(1):4–10

    Article  PubMed  CAS  Google Scholar 

  • Shastry PR, Hegde UC, Rao SS (1977) Use of ficoll-sodium metrizoate density gradient to separate human X-bearing and Y-bearing spermatozoa. Nature 269(5623):58–60

    Article  PubMed  CAS  Google Scholar 

  • Shi XG, Wang SH, Meshinchi S, Van Antwerp ME, Bi XD, Lee IH, Baker JR (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Shi TY, Chen G, Huang X, Yuan Y, Wu X, Wu B, Li Z, Shun F, Chen H, Shi H (2012) Effects of reactive oxygen species from activated leucocytes on human sperm motility, viability and morphology. Andrologia 44:696–703

    Article  PubMed  CAS  Google Scholar 

  • Shirai M, Matsuda S (1974) Galvanic separation of X-bearing and Y-bearing human spermatozoa. Jpn J Urol 65(5):297–302

    Article  CAS  Google Scholar 

  • Shirai M, Matsuda S, Mitsukaw S (1974) Electrophoretic separation of X- and Y-chromosome-bearing sperm in human semen. Tohoku J Exp Med 113(3):273–281

    Article  PubMed  CAS  Google Scholar 

  • Shishito S, Shirai M, Sasaki K (1975) Galvanic separation of X-bearing and Y-bearing human spermatozoa. Int J Fertil 20(1):13–16

    PubMed  CAS  Google Scholar 

  • Sills ES, Kirman I, Colombero LT, Hariprashad J, Rosenwaks Z, Palermo GD (1998) H-Y antigen expression patterns in human X- and Y-chromosome-bearing spermatozoa. Am J Reprod Immunol 40(1):43–47

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovellbadge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346(6281):240–244

    Article  PubMed  CAS  Google Scholar 

  • Sinha RP, Hader DP (2002) UV-induced damage and repair: a review. Photochem Photobiol 1:225–236

    Article  CAS  Google Scholar 

  • Spinaci M, De Ambrogi M, Volpe S, Galeati G, Tamanini C, Seren E (2005) Effect of staining and sorting on boar sperm membrane integrity, mitochondrial activity and in vitro blastocyst development. Theriogenology 64(1):191–201

    Article  PubMed  CAS  Google Scholar 

  • Spinaci M, Volpe S, Bernardint C, De Ambrogi M, Tamanini C, Seren E, Galeati G (2006) Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa. J Androl 27(6):899–907

    Article  PubMed  CAS  Google Scholar 

  • Spinaci M, Vallorani C, Bucci D, Bernardini C, Tamanini C, Seren E, Galeati G (2010) Effect of liquid storage on sorted boar spermatozoa. Theriogenology 74(5):741–748

    Article  PubMed  CAS  Google Scholar 

  • Spinaci M, Perteghella S, Chlapanidas T, Galeati G, Vigo D, Tamanini C, Bucci D (2016) Storage of sexed boar spermatozoa: limits and perspectives. Theriogenology 85(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Steverink DWB, Soede NM, Bouwman EG, Kemp B (1997) Influence of insemination-ovulation interval and sperm cell dose on fertilization in sows. J Reprod Fertil 111(2):165–171

    Article  PubMed  CAS  Google Scholar 

  • Steverink DWB, Soede NM, Bouwman EG, Kemp B (1998) Semen backflow after insemination and its effect on fertilisation results in sows. Anim Reprod Sci 54(2):109–119

    Article  PubMed  CAS  Google Scholar 

  • Stovel RT, Sweet RG, Herzenberg LA (1978) Means for orienting flat cells in flow systems. Biophys J 23(1):1–5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suh TK, Schenk JL, Seidel GE (2005) High pressure flow cytometric sorting damages sperm. Theriogenology 64(5):1035–1048

    Article  PubMed  CAS  Google Scholar 

  • Suh RS, Phadke N, Ohl DA, Takayama S, Smith GD (2003) Rethinking gamete/embryo isolation and culture with microfluidics. Hum Reprod Update 9(5):451–461

    Article  PubMed  Google Scholar 

  • Taylor U, Barchanski A, Kues W, Barcikowski S, Rath D (2012) Impact of metal nanoparticles on germ cell viability and functionality. Reprod Domest Anim 47:359–368

    Article  PubMed  Google Scholar 

  • Taylor U, Rath D, Zerbe H, Schuberth HJ (2008) Interaction of intact porcine spermatozoa with epithetial cells and neutrophilic granulocytes during uterine passage. Reprod Domest Anim 43(2):166–175

    Article  PubMed  CAS  Google Scholar 

  • Taylor U, Petersen S, Barcikowski S, Rath D, Klein S (2009c) Verification of gold nanoparticle uptake by bovine immortalised cells using laser scanning confocal microscopy. Cytometry Part A 75a(8):714

    Google Scholar 

  • Taylor U, Rehbock C, Streich C, Rath D, Barcikowski S (2014) Rational design of gold nanoparticle toxicology assays: a question of exposure scenario, dose and experimental setup. Nanomedicine 9(13):1971–1989

    Article  PubMed  CAS  Google Scholar 

  • Taylor U, Klein S, Petersen S, Kues W, Barcikowski S, Rath D (2010) Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry Part A 77a(5):439–446

    CAS  Google Scholar 

  • Taylor U, Tiedemann D, Rehbock C, Kues WA, Barcikowski S, Rath D (2015) Influence of gold, silver and gold-silver alloy nanoparticles on germ cell function and embryo development. Beilstein J Nanotechnology 6:651–664

    Article  CAS  Google Scholar 

  • Taylor U, Schuberth HJ, Rath D, Michelmann HW, Sauter-Louis C, Zerbe H (2009a) Influence of inseminate components on porcine leucocyte migration in vitro and in vivo after pre- and post-ovulatory insemination. Reprod Domest Anim 44(2):180–188

    Article  PubMed  CAS  Google Scholar 

  • Taylor U, Zerbe H, Seyfert HM, Rath D, Baulain U, Langner KFA, Schuberth HJ (2009b) Porcine spermatozoa inhibit post-breeding cytokine induction in uterine epithelial cells in vivo. Anim Reprod Sci 115(1–4):279–289

    Article  PubMed  CAS  Google Scholar 

  • Tiedemann D, Taylor U, Rehbock C, Jakobi J, Klein S, Kues WA, Rath D (2014) Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes. Analyst 139(5):931–942

    Article  PubMed  CAS  Google Scholar 

  • Tkachenko AG, Xie H, Liu YL, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 15(3):482–490

    Article  PubMed  CAS  Google Scholar 

  • Tomkins PT, Houghton JA (1988) The rapid induction of the acrosome reaction of human-spermatozoa by electropermeabilization. Fertil Steril 50(2):329–336

    Article  PubMed  CAS  Google Scholar 

  • Trigal B, Gomez E, Caamano JN, Munoz M, Moreno J, Carrocera S, Martin D, Diez C (2012) In vitro and in vivo quality of bovine embryos in vitro produced with sex-sorted sperm. Theriogenology 78(7):1465–1475

    Article  PubMed  CAS  Google Scholar 

  • Uwland J, Willems CM (1975) Results of semen separation using a modified electromagnetochemical method. Tijdschr Diergeneeskd 100:369–374

    Google Scholar 

  • van Munster EB (2002) Interferometry in flow to sort unstained X- and Y-chromosome-bearing bull spermatozoa. Cytometry 47(3):192–199

    Article  PubMed  Google Scholar 

  • Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A (2016) Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update 22(4):411–419

    Article  PubMed  CAS  Google Scholar 

  • Vazquez JM, Martinez EA, Parrilla I, Gil MA, Lucas X, Roca J (2002) Motility characteristics and fertilizing capacity of boar spermatozoa stained with Hoechst 33342. Reprod Domest Anim 37(6):369–374

    Article  PubMed  CAS  Google Scholar 

  • Vazquez JM, Martinez EA, Parrilla I, Roca J, Gil MA, Vazquez JL (2003) Birth of piglets after deep intrauterine insemination with flow cytometrically sorted boar spermatozoa. Theriogenology 59(7):1605–1614

    Article  PubMed  Google Scholar 

  • Vazquez JM, Roca J, Gil MA, Cuello C, Parrilla I, Vazquez JL, Martinez EA (2008b) New developments in low-dose insemination technology. Theriogenology 70(8):1216–1224

    Article  PubMed  CAS  Google Scholar 

  • Vazquez JM, Roca J, Gil MA, Cuello C, Parrilla I, Caballero I, Vazquez JL, Martinez EA (2008a) Low-dose insemination in pigs: problems and possibilities. Reprod Domest Anim 43:347–354

    Article  PubMed  Google Scholar 

  • Vazquez JM, Martinez EA, Roca J, Gil MA, Parrilla I, Cuello C, Carvajal G, Lucas X, Vazquez JL (2005) Improving the efficiency of sperm technologies in pigs: the value of deep intrauterine insemination. Theriogenology 63(2):536–547

    Article  PubMed  Google Scholar 

  • Verma A, Uzun O, Hu YH, Hu Y, Han HS, Watson N, Chen SL, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidal F, Moragas M, Catala V, Torello MJ, Santalo J, Calderon G, Gimenez C, Barri PN, Egozcue J, Veiga A (1993) Sephadex filtration and human serum-albumin gradients do not select spermatozoa by sex-chromosome – a fluorescent in-situ hybridization study. Hum Reprod 8(10):1740–1743

    Article  PubMed  CAS  Google Scholar 

  • Vidament A (2005) French field results (1985–2005) on factors affecting fertility of frozen stallion semen. Anim Reprod Sci 89(1–4):115–136

    Article  PubMed  CAS  Google Scholar 

  • Viring S, Einarsson S (1981) Sperm distribution within the genital-tract of naturally inseminated gilts. Nord Vet Med 33(3):145–149

    PubMed  CAS  Google Scholar 

  • Waberski D, Meding S, Dirksen G, Weitze KF, Leiding C, Hahn R (1994) Fertility of long-term-stored boar semen – influence of extender (Androhep and Kiev), storage time and plasma droplets in the semen. Anim Reprod Sci 36(1–2):145–151

    Article  Google Scholar 

  • Walker DW, Benzer S (2004) Mitochondrial “swirls” induced by oxygen stress and in the Drosophila mutant hyperswirl. Proc Natl Acad Sci U S A 101(28):10290–10295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang HX, Flaherty SP, Swann NJ, Matthews CD (1994a) Assessment of the separation of X-bearing and Y-bearing sperm on albumin gradients using double-label fluorescence in-situ hybridization. Fertil Steril 61(4):720–726

    Article  PubMed  CAS  Google Scholar 

  • Wang HX, Flaherty SP, Swann NJ, Matthews CD (1994b) Discontinuous percoll gradients enrich X-bearing human spermatozoa – a study using double-label fluorescence in-situ hybridization. Hum Reprod 9(7):1265–1270

    Article  PubMed  CAS  Google Scholar 

  • Wang XH, Fang HQ, Huang ZL, Shang W, Hou TT, Cheng AW, Cheng HP (2013) Imaging ROS signaling in cells and animals. J Mol Med 91(8):917–927

    Article  PubMed  CAS  Google Scholar 

  • Watkins AM, Chan PJ, Kalugdan TH, Patton WC, Jacobson JD, King A (1996) Analysis of the flow cytometer stain Hoechst 33342 on human spermatozoa. Mol Hum Reprod 2(9):709–712

    Article  PubMed  CAS  Google Scholar 

  • Welch GR, Johnson LA (1999) Sex preselection: laboratory validation of the sperm sex ratio of flow sorted X- and Y-sperm by sort reanalysis for DNA. Theriogenology 52(8):1343–1352

    Article  PubMed  CAS  Google Scholar 

  • Windsor DP, Evans G, White IG (1993) Sex predetermination by separation of X and Y chromosome-bearing sperm: a review. Reprod Fertil Dev 5(1):155–171

    Article  PubMed  CAS  Google Scholar 

  • Wu YX, Zhou H, Fan XY, Zhang Y, Zhang M, Wang YH, Xie ZF, Bai MZ, Yin Q, Liang D, Tang W, Liao JY, Zhou CK, Liu WJ, Zhu P, Guo HS, Pan H, Wu CL, Shi HJ, Wu LG, Tang FC, Li JS (2015) Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 25(1):67–79

    Article  PubMed  CAS  Google Scholar 

  • Xodo LE, Rathinavelan T, Quadrifoglio F, Manzini G, Yathindra N (2001) Targeting neighbouring poly(purine center dot pyrimidine) sequences located in the human bcr promoter by triplex-forming oligonucleotides. Eur J Biochem 268(3):656–664

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Guo Z, Su L, Nedambale TL, Zhang J, Schenk J, Moreno JF, Dinnyes A, Ji W, Tian XC, Yang X, Du F (2006) Developmental potential of vitrified Holstein cattle embryos fertilized in vitro with sex-sorted sperm. J Dairy Sci 89(7):2510–2518

    Article  PubMed  CAS  Google Scholar 

  • Xu KP, Yadav BR, King WA, Betteridge KJ (1992) Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol Reprod Dev 31(4):249–252

    Article  PubMed  CAS  Google Scholar 

  • Yoisungnern T, Choi Y-J, Han JW, Kang M-H, Das J, Gurunathan S, Chang WK (2015) Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development. Sci Rep 5:11170

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang XD, Wu HY, Wu D, Wang YY, Chang JH, Zhai ZB, Meng AM, Liu PX, Zhang LA, Fan FY (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine 5:771–781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, Yan B (2014) Perturbation of physiological systems by nanoparticles. Chem Soc Rev 43(10):3762–3809

    Article  PubMed  CAS  Google Scholar 

  • Zobel R, Gereš D, Pipal I, Buić V, Gračner D, Tkalcic S (2011) Influence of the semen deposition site on the calves’ sex ratio in simmental dairy cattle. Reprod Domest Anim 46(4):595–601

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to Dr. Lawrence A. Johnson, who contributed most to the development and introduction of sperm sexing in farm animal reproduction. The authors of this paper are very thankful for his constant support and friendship. Larry Johnson celebrated his 80th birthday on July 9th, 2016. We also gratefully acknowledge all the students, technicians and scientists, who contributed in the laboratories of both authors, and who made the research on sperm sexing such an interesting part of our lives. We honour the personal friendships created during these projects, including that between the authors, which has encompassed some 25 years of collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Rath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rath, D., Maxwell, C. (2018). Technique and Application of Sex-Sorted Sperm in Domestic Farm Animals. In: Niemann, H., Wrenzycki, C. (eds) Animal Biotechnology 1. Springer, Cham. https://doi.org/10.1007/978-3-319-92327-7_4

Download citation

Publish with us

Policies and ethics