Skip to main content

Importance of Soils of Agroecosystems for Climate Change Policy

  • Chapter
  • First Online:
Carbon Sequestration in Agricultural Ecosystems

Abstract

Until now, international climate change policy has neglected the potential of agroecosystems to contribute to climate change mitigation by reduction in net greenhouse gas (GHG) emissions, and by enhancing soil inorganic carbon (SIC) and soil organic carbon (SOC) sequestration. Proven agricultural practices for creating a positive soil C balance such as those under the umbrella of climate-smart agriculture (CSA) are readily available. In the future, the importance of soil C stocks for climate change mitigation will be addressed by the target of Land Degradation Neutrality (LDN) of United Nations Convention to Combat Desertification (UNCCD), and land- and soil-related targets for achieving United Nations Sustainable Development Goals (SDGs). Further, many nationally determined contributions (NDCs) submitted to United Nations Framework Convention on Climate Change (UNFCCC) after the 2015 Paris Agreement include references to soil enhancement and to the necessity of better soil management practices. Similarly, an ambitious goal to increase global soil C stocks of managed agricultural land by 0.4% per year in the topsoil was set by the ‘4 Per 1000 Initiative : Soils for Food Security and Climate’ (4p1000). Based on this, spatially diversified strategies need to be developed to sequester SOC in agroecosystems by addressing limitations imposed by nutrient (i.e., nitrogen and phosphorus) availability, and due consideration of economic and social aspects. Thus, meaningful actions that help to restore and protect soils of agroecosystems including their SOC stocks have been initiated recently. It is hoped that soils of agroecosystems will increasingly be managed to address climate climate change while at the same time contributing to food security under increasing pressure from population growth and dietary changes. This chapter begins with an overview over some practices to enhance soil C stocks in agroecosystems for climate and food security. This is followed by a description of previously proposed climate change mitigation policies and their reference to agroecosystems soil C stocks. Then, a brief overview over CSA, carbon farming , and the soil security framework is given. This chapter concludes with a section on payments for ecosystem services (ESs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar-Schuster M, Stringer LC, Erlewein A et al (2017) Unpacking the concept of land degradation neutrality and addressing its operation through the Rio Conventions. J Environ Manage 195:4–15

    Article  PubMed  Google Scholar 

  • Arriagada R, Perrings C (2013) Making payments for ecosystem services work. In: Kumar P, Thiaw I, Barker T (eds) Values, payments and institutions for ecosystem management: a developing country perspective. Edward Elgar Publishing Cheltenham, UK

    Google Scholar 

  • Aubert PM, Treyer S, Sablé AL, et al (2017) Implementing the “4 per 1000” initiative: contribution for the establishment of a reference/normative framework. IDDRI Policy Brief N°02/17 JANUARY 2017

    Google Scholar 

  • Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B (2017) Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Glob Change Biol 23:3808–3824. https://doi.org/10.1111/gcb.13691

    Article  Google Scholar 

  • Australian Government (2012) Carbon Credits (Carbon farming initiative) Act 2011. Australian Government, Canberra

    Google Scholar 

  • Baveye PC, Berthelin J, Tessier D, Lemaire G (2018) The “4 per 1000” initiative: A credibility issue for the soil science community? Geoderma 309:118–123

    Article  Google Scholar 

  • Becker K, Lawrence P (2014) Carbon farming: the best and safest way forward? Carbon Manage 5:31–33

    Article  CAS  Google Scholar 

  • Bispo A, Andersen L, Angers DA et al (2017) Accounting for carbon stocks in soils and measuring GHGs emission fluxes from soils: do we have the necessary standards? Front Environ Sci 5:41. https://doi.org/10.3389/fenvs.2017.00041

    Article  Google Scholar 

  • Boer BW, Ginzky H, Heuser IL (2017). International soil protection law: history, concepts and latest developments. In: Ginzky H, et al (eds) International Yearbook of Soil Law and Policy 2016. Springer International Publishing AG, pp 49–72

    Chapter  Google Scholar 

  • Bouma J (2015) Reaching out from the soil-box in pursuit of soil security. Soil Sci Plant Nutr 61:556–565

    Article  CAS  Google Scholar 

  • Boysen LR, Lucht W, Gerten D et al (2017) The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 5:463–474. https://doi.org/10.1002/2016EF000469

    Article  CAS  Google Scholar 

  • Buchner BK, Oliver P, Wang X, et al (2017) Global landscape of climate finance 2017. Climate policy initiative. https://climatepolicyinitiative.org/wp-content/uploads/2017/10/2017-Global-Landscape-of-Climate-Finance.pdf

  • Buchner BK, Trabacchi C, Mazza F, Abramskiehn D, Wang D (2015) Global landscape of climate finance 2015. https://climatepolicyinitiative.org/publication/global-landscape-of-climate-finance-2015/

  • Chabbi A, Lehmann J, Ciais P et al (2017) Aligning agriculture and climate policy. Nat Clim Change 7:307–309

    Article  Google Scholar 

  • Chambers A, Lal R, Paustian K (2016) Soil carbon sequestration potential of US croplands and grasslands: implementing the 4 per Thousand Initiative. J Soil Water Conserv 71:68A–74A. https://doi.org/10.2489/jswc.71.3.68A

    Article  Google Scholar 

  • Chatrchyan AM, Erlebacher RC, Chaopricha NT et al (2017) United States agricultural stakeholder views and decisions on climate change. WIREs Clim Change 8:e469. https://doi.org/10.1002/wcc.469

    Article  Google Scholar 

  • Claassen R, Cattaneo A, Johansson R (2008) Cost-effective design of agri-environmental payment programs: U.S. experience in theory and practice. Ecol Econ 65:737–752

    Article  Google Scholar 

  • Costanza R, Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Costanza R, de Groot R, Braat L et al (2017) Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst Serv 28:1–16

    Article  Google Scholar 

  • Devaraju N, Bala G, Nemani R (2015) Modeling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. https://doi.org/10.1111/pce.12488

    Article  PubMed  Google Scholar 

  • De Vries W (2018) Soil carbon 4 per mille: a good initiative but let’s manage not only the soil but also the expectations. Geoderma 309:111–112

    Article  Google Scholar 

  • Dickie A, Streck C, Roe S, et al (2014) Strategies for mitigating climate change in agriculture: abridged report. Climate Focus and California Environmental Associates, prepared with the support of the Climate and Land Use Allinace. www.agriculturalmitigation.org

  • Dignac MF, Derrien D, Barré P et al (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron Sustain Dev 37:14

    Article  CAS  Google Scholar 

  • Djanibekov U, Villamor GB (2017) Market-based instruments for risk-averse farmers: rubber agroforest conservation in Jambi Province, Indonesia. Environ Dev Econ 22:133–155

    Article  Google Scholar 

  • Dong X, Hao Q, Li G, Lin Q, Zhao X (2017) Contrast effect of long-term fertilization on SOC and SIC stocks and distribution in different soil particle-size fractions. J Soils Sediments 17:1054–1063. https://doi.org/10.1007/s11368-016-1615-y

    Article  CAS  Google Scholar 

  • Dumbrell NP, Kragt ME, Gibson FL (2016) What carbon farming activities are farmers likely to adopt? Abest–worst scaling survey. Land Use Pol 54:29–37

    Article  Google Scholar 

  • FAO (2013a) Agriculture, forestry and other land use mitigation project database. Second assessment of the current status of land-based sectors in the carbon market. http://www.fao.org/docrep/017/i3176e/i3176e.pdf

  • FAO (2013b) Climate-smart agriculture sourcebook. FAO, Rome

    Google Scholar 

  • FAO (2016) The agriculture sectors in the intended nationally determined contributions: analysis. In: Strohmaier R, Rioux J, Seggel A, Meybeck A, Bernoux M, Salvatore M, Miranda J, Agostini A (eds) Environment and natural resources management Working Paper No. 62. Rome

    Google Scholar 

  • Forsell N, Turkovska O, Gusti M et al (2016) Assessing the INDCs’ land use, land use change, and forest emission projections. Carbon Balance Manage 11:26. https://doi.org/10.1186/s13021-016-0068-3

    Article  Google Scholar 

  • Gao L, Bryan BA (2017) Finding pathways to national-scale land-sector sustainability. Nature 544:217–235

    Article  CAS  PubMed  Google Scholar 

  • Graichen J, Healy S, Siemons A, et al (2017) International climate initiatives—a way forward to close the emissions gap? Umweltbundesamt [German Environment Agency] CLIMATE CHANGE 22/2017, https://www.umweltbundesamt.de/en/publikationen/international-climate-initiatives-a-way-forward-to-0

  • Green JF (2017) Don’t link carbon markets. Nature 543:484–486

    Article  CAS  PubMed  Google Scholar 

  • Grima N, Singh SJ, Smetschka B, Ringhofer L (2016) Payment for ecosystem services (PES) in Latin America: analysing the performance of 40 case studies. Ecosyst Serv 17:24–32

    Article  Google Scholar 

  • Griscom BW, Adams J, Ellis PW et al (2017) Natural climate solutions. Proc Natl Acad Sci USA 114:11645–11650

    Article  CAS  PubMed  Google Scholar 

  • Hamilton K, Sjardin M, Marcello T, Xu G (2008) Forging a frontier: state of the voluntary carbon markets 2008. Ecosystem Marketplace & New Carbon Finance, New York and Washington, DC

    Google Scholar 

  • Heitkötter J, Heinze S, Marschner B (2017) Relevance of substrate quality and nutrients for microbial C-turnover in top and subsoil of a Dystric Cambisol. Geoderma 302:89–99

    Article  CAS  Google Scholar 

  • Hermann D, Sauthoff S, Mußhoff O (2017) Ex-ante evaluation of policy measures to enhance carbon sequestration in agricultural soils. Ecol Econ 140:241–250

    Article  Google Scholar 

  • Hobley E, Baldock J, Hua Q, Wilson B (2017) Land-use contrasts reveal instability of subsoil organic carbon. Glob Change Biol 23:955–965

    Article  Google Scholar 

  • Johnston AE, Poulton PR, Coleman K, Macdonald AJ, White RP (2017) Changes in soil organic matter over 70 years in continuous arable and ley–arable rotations on a sandy loam soil in England. Eur J Soil Sci 68:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A (2017) Soil security for agricultural productivity: the policy disconnect and a promising future. In: Field DJ, Morgan CLS, McBratney AB (eds) Global Soil Security, Progress in Soil Science. Springer International Publishing Switzerland, pp 425–435. https://doi.org/10.1007/978-3-319-43394-3_39

    Google Scholar 

  • Koch A, McBratney A, Adams M et al (2013) Soil security: solving the global soil crisis. Glob Pol 4:434–441

    Article  Google Scholar 

  • Koch A, McBratney A, Lal R (2012) Global soil week: put soil security on the global agenda. Nature 492:186

    Article  CAS  PubMed  Google Scholar 

  • Kust G, Andreeva O, Cowie AL (2017) Land degradation neutrality: concept development, practical applications and assessment. J Environ Manage 195:16–24

    Article  PubMed  Google Scholar 

  • Kyoto Protocol (1997) Kyoto protocol to the United Nations framework convention on climate change adopted at COP3 in Kyoto, Japan, 11 Dec 1997

    Google Scholar 

  • Lal R (2014) Societal value of soil carbon. J Soil Water Conserv 69:186A–192A. https://doi.org/10.2489/jswc.69.6.186A

    Article  Google Scholar 

  • Lal R (2016) Beyond COP21: potential and challenges of the “4 per Thousand” initiative. J Soil Water Conserv 71:20A–25A. https://doi.org/10.2489/jswc.71.1.20A

    Article  Google Scholar 

  • Lal R (2018) Promoting “4 per thousand” and “adapting African agriculture” by south-south cooperation: conservation agriculture and sustainable intensification. Soil Till Res. https://doi.org/10.1016/j.still.2017.12.015

    Article  Google Scholar 

  • Lal R, Safriel U, Boer B (2012) Zero net land degradation. UNCCD Position Paper for Rioþ20. Bonn, Germany. http://www.unccd.int/Lists/SiteDocumentLibrary/Rioþ20/UNCCD_PolicyBrief_ZeroNetLandDegradation.pdf

  • Larjavaara M, Kanninen M, Gordillo H et al (2018) Global variation in the cost of increasing ecosystem carbon. Nat Clim Change 8:38–42

    Article  CAS  Google Scholar 

  • Lipper L, Thornton P, Campbell BM et al (2014) Climate-smart agriculture for food security. Nat Clim Change 4:1068–1072

    Article  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2016) Soil organic carbon—an appropriate indicator to monitor trends of land and soil degradation within the SDG Framework? Umweltbundesamt [German Environment Agency] Text 77/2016. https://www.umweltbundesamt.de/publikationen/soil-organic-carbon-an-appropriate-indicator-to

  • Macintosh A (2013) The carbon farming initiative: removing the obstacles to its success. Carbon Manage 4:185–202

    Article  CAS  Google Scholar 

  • Macintosh A, Waugh L (2012) An introduction to the carbon farming initiative: key concepts and principles. Environ Plan Law J 29:439–461

    Google Scholar 

  • McBratney A, Field DJ (2015) Securing our soil. Soil Sci Plant Nutr 61:587–591

    Article  CAS  Google Scholar 

  • McBratney A, Field DJ, Koch A (2014) The dimensions of soil security. Geoderma 213:203–213

    Article  Google Scholar 

  • Minasny B, Arrouays D, McBratney AB et al (2018) Rejoinder to comments on Minasny et al., 2017 Soil carbon 4 per mille Geoderma 292, 59–86. Geoderma 309:124–129

    Article  Google Scholar 

  • Minasny B, Malone BP, McBratney AB et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  • Minelli S, Erlewein A, Castillo V (2017) Land degradation neutrality and the UNCCD: From political vision to measurable targets. In: Ginzky H, et al. (eds) International yearbook of soil law and policy 2016. Springer International Publishing AG, pp 85–104

    Chapter  Google Scholar 

  • Monger HC, Kraimer RA, Khresat S, Cole DR, Wang X, Wang J (2015) Sequestration of inorganic carbon in soil and groundwater. Geology 43:375–378

    Article  CAS  Google Scholar 

  • Morgan CLS, McBratney AB, Field DJ, et al (2017) Synthesis: goals to achieve soil security. In: Field DJ, Morgan CLS, McBratney AB (eds) Global soil security, progress in soil science. Springer International Publishing Switzerland, pp 457–462. https://doi.org/10.1007/978-3-319-43394-3_43

    Google Scholar 

  • Ogle SM, Olander L, Wollenberg L et al (2014) Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action. Glob Change Biol 20:1–6. https://doi.org/10.1111/gcb.12361

    Article  Google Scholar 

  • Orr BJ, Cowie AL, Castillo Sanchez VM et al (2017) Scientific conceptual framework for land degradation neutrality. A report of the science-policy interface. United Nations Convention to Combat Desertification (UNCCD), Bonn, Germany

    Google Scholar 

  • Paris Agreement (2015) Adoption of the Paris Agreement. FCCC/CP/2015/L.9/Rev.1

    Google Scholar 

  • Parliament of the Commonwealth of Australia (2011) Carbon credits (Carbon Farming Initiative) bill. Explanatory Memorandum, Parliament of the Commonwealth of Australia, Canberra, ACT

    Google Scholar 

  • Parliament of the Commonwealth of Australia (2014) Carbon farming initiative amendment bill. Explanatory Memorandum. Parliament of the Commonwealth of Australia, Canberra, ACT

    Google Scholar 

  • Paustian K, Lehmann J, Ogle S et al (2016) Climate-smart soils. Nature 532:49–57

    Article  CAS  PubMed  Google Scholar 

  • Pirard R (2012) Market-based instruments for biodiversity and ecosystem services: a lexicon. Environ Sci Pol 19–20:59–68

    Article  Google Scholar 

  • Pirard R, Lapeyre R (2014) Classifying market-based instruments for ecosystem service: a guide to the literature jungle. Ecosyst Serv 9:106–114

    Article  Google Scholar 

  • Porter JR, Howden M, Smith P (2017) Considering agriculture in IPCC assessments. Nat Clim Change 7:680–683

    Article  Google Scholar 

  • Porter JR, Xie L, Challinor AJ, et al (2014) Food security and food production systems. In: IPCC. 2014. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, USA, pp 485–533

    Google Scholar 

  • Rao CS, Gopinath KA, Prasad JVNS, Prasannakumar Singh AK (2016) Climate resilient villages for sustainable food security in tropical India: concept, process, technologies, institutions, and impacts. Adv Agron 140:101–214

    Article  Google Scholar 

  • Reuters Staff (2010) ICE cuts staff at Chicago climate exchange-sources. https://www.reuters.com/article/carbon-ccx-layoffs/ice-cuts-staff-at-chicago-climate-exchange-sources-idUSLDE6791WI20100812

  • Ribaudo M, Greene C, Hansen L, Hellerstein D (2010) Ecosystem services from agriculture: steps for expanding markets. Ecol Econ 69:2085–2092

    Article  Google Scholar 

  • Rioux J, Juan MGS, Neely C, et al (2016) Planning, implementing and evaluating climate-smart agriculture in smallholder farming systems. The experience of the MICCA pilot projects in Kenya and the United Republic of Tanzania. Mitigation of Climate Change in Agriculture Series 11, FAO, Rome

    Google Scholar 

  • Roesch-McNally GE, Arbuckle JG, Tyndall JC (2018) Barriers to implementing climate resilient agricultural strategies: The case of crop diversification in the U.S. Corn Belt. Glob Environ Change 48:206–215

    Article  Google Scholar 

  • Rogelj J, Schleussner CF, Hare W (2017) Getting it right matters: Temperature goal interpretations in geoscience research. Geophys Res Lett 44:10,662–10,665. https://doi.org/10.1002/2017GL075612

    Article  Google Scholar 

  • Rosenkranz M, Pugh TAM, Schnitzler JP, Arneth A (2015) Effect of land-use change and management on biogenic volatile organic compound emissions—selecting climate-smart cultivars. Plant Cell Environ. https://doi.org/10.1111/pce.12453

    Article  PubMed  Google Scholar 

  • Rosenstock TS, Lamanna C, Chesterman S, et al. (2016) The scientific basis of climate-smart agriculture: a systematic review protocol. CCAFS Working Paper no. 138. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). https://www.ccafs.cgiar.org

  • Rumpel C, Lehmann J, Chabbi A (2018) Boost soil carbon for food and climate. Nature 553:27

    Article  CAS  PubMed  Google Scholar 

  • Safriel U (2017) Land Degradation Neutrality (LDN) in drylands and beyond—where has it come from and where does it go. Silva Fennica vol 51 no. 1B article id 1650. 19pp. https://doi.org/10.14214/sf.1650

  • Saj S, Torquebiau E, Hainzelin E, Pages J, Maraux F (2017) The way forward: An agroecological perspective for climate-smart agriculture. Agric Ecosyst Environ 250:20–24

    Article  Google Scholar 

  • Sanderman J (2012) Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agric Ecosyst Environ 155:70–77

    Article  CAS  Google Scholar 

  • Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci USA 114:9575–9580

    Article  CAS  PubMed  Google Scholar 

  • Sattler C, Trampnau S, Schomers S, Meyer C, Matzdorf B (2013) Multi-classification of payments for ecosystem services: how do classification characteristics relate to overall PES success? Ecosyst Serv 6:31–45

    Article  Google Scholar 

  • Scherer L, Verburg PH (2017) Mapping and linking supply- and demand-side measures in climate-smart agriculture. A review. Agron Sustain Dev 37:66. https://doi.org/10.1007/s13593-017-0475-1

    Article  Google Scholar 

  • Shi HJ, Wang XJ, Zhao YJ et al (2017) Relationship between soil inorganic carbon and organic carbon in the wheat-maize cropland of the North China Plain. Plant Soil 418:423–436. https://doi.org/10.1007/s11104-017-3310-1

    Article  CAS  Google Scholar 

  • Smith P (2016) Soil carbon sequestration and biochar as negative emission technologies. Glob Change Biol 22:1315–1324

    Article  Google Scholar 

  • Smith P, Bustamante M, Ahammad H, et al (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 811–922

    Google Scholar 

  • Smith P, Lutfalla S, Riley WJ et al (2018) The changing faces of soil organic matter research. Eur J Soil Sci 69:23–30. https://doi.org/10.1111/ejss.12500

    Article  Google Scholar 

  • Soussana JF, Lutfalla S, Smith P, et al (2017) Letter to the editor: Answer to the viewpoint “Sequestering soil organic carbon: A nitrogen dilemma”. Environ Sci Technol 51:11502–11502. https://doi.org/10.1021/acs.est.7b03932

    Article  CAS  Google Scholar 

  • Streck C, Gay A (2017) The role of soils in international climate change policy. In: Ginzky H et al (eds) International yearbook of soil law and policy 2016. Springer International Publishing AG, pp 105–128

    Chapter  Google Scholar 

  • Tang K, Kragt ME, Hailu A, Ma C (2016) Carbon farming economics: what have we learned? J Environ Manage 172:49–57

    Article  PubMed  Google Scholar 

  • Tietenberg TH (2006) Emissions trading: principles and practice. Resources for the Future, Washington, DC

    Google Scholar 

  • Toensmeier E (2016) The carbon farming solution: a global toolkit of perennial crops and regenerative agriculture practices for climate change mitigation and food security. Chelsea Green Publishing, White River Junction, Vermont, USA

    Google Scholar 

  • Trexler MC, Kosloff LH (2006) Selling carbon neutrality. The Environmental Forum, March/April, pp 34–39

    Google Scholar 

  • Trumbore SE, Davidson EA, de Camargo PB et al (1995) Belowground cycling of carbon in forests and pastures of Eastern Amazonia. Glob Biogeochem Cycles 9:515–528

    Article  CAS  Google Scholar 

  • Turner WR (2018) Looking to nature for solutions. Nat Clim Change 8:14–21

    Article  Google Scholar 

  • UNEP (2017) The emissions gap report 2017. United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  • United Nations Convention to Combat Desertification (UNCCD) (2016) Report of the Conference of the Parties on its twelfth session, held in Ankara from 12 to 23 October 2015. Part two: Actions. ICCD/COP(12)/20/Add.1. United Nations Convention to Combat Desertification (UNCCD), Bonn, Germany

    Google Scholar 

  • United Nations Framework Convention on Climate Change, Subsidiary Body for Scientific and Technological Advice UNFCCC SBSTA (2017) Issues relating to agriculture. FCCC/SBSTA/2017/L.24/Add.1

    Google Scholar 

  • United Nations General Assembly (UNGA) (1994) Elaboration of an international convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa. Final text of the Convention. A/AC.241/27. http://www.unccd.int/Lists/SiteDocumentLibrary/conventionText/conv-eng.pdf

  • United Nations General Assembly (UNGA) (2015) Draft outcome document of the United Nations summit for the adoption of the post-2015 development agenda. Resolution A/69/L.85, United Nations General Assembly, New York

    Google Scholar 

  • U.S. Department of Agriculture USDA (2016) Implementation Plan and Progress Report USDA Building Blocks for Climate Smart Agriculture and Forestry May 2016. Washington, D.C.

    Google Scholar 

  • VandenBygaart AJ (2018) Comments on soil carbon 4 per mille by Minasny et al. 2017. Geoderma 309:113–114

    Article  Google Scholar 

  • van Groenigen JW, van Kessel C, Hungate BA et al (2017a) Sequestering soil organic carbon: a nitrogen dilemma. Environ Sci Technol. https://doi.org/10.1021/acs.est.7b01427

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Groenigen JW, van Kessel C, Hungate BA et al (2017b) Response to the letter to the edi-tor regarding our viewpoint “Sequestering soil organic carbon: a nitrogen dilemma”. Envi-ron Sci Technol 51:11503–11504. https://doi.org/10.1021/acs.est.7b04554

    Article  CAS  Google Scholar 

  • van Oosterzee (2012) The integration of biodiversity and climate change: a contextual assessment of the carbon farming initiative. Ecol Manage Restore 13:238–244. https://doi.org/10.1111/emr.12001

  • Walsh B, Ciais P, Janssens IA et al (2017) Pathways for balancing CO2 emissions and sinks. Nat Commun 8:14856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Monger C, Wang X, Serena M, Leinauer B (2016) Carbon Sequestration in response to grassland–shrubland–turfgrass conversions and a test for carbonate biomineralization in desert soils, New Mexico, USA. Soil Sci Soc Am J 80:1591–1603

    Article  CAS  Google Scholar 

  • Way DA, Long SP (2015) Climate-smart agriculture and forestry: maintaining plant productivity in a changing world while minimizing production system effects on climate. Plant Cell Environ 38:1683–1685

    Article  PubMed  Google Scholar 

  • White RE, Davidson B, Lam SK, Chen D (2018) A critique of the paper ‘Soil carbon 4 per mille’ by Minasny et al. (2017). Geoderma 309:115–117

    Article  Google Scholar 

  • Working group report of the scientific committee of the initiative for the Adaptation of African Agriculture to Climate Change (2016) The initiative for the adaptation of African agriculture to climate change (AAA)—White Paper http://www.aaainitiative.org/sites/aaainitiative.org/files/AAA_livre_blanc_ENG.pdf

  • WunderS Engel S, Pagiola S (2008) Taking stock: a comparative analysis of payments for environmental services programs in developed and developing countries. Ecol Econ 65:834–852

    Article  Google Scholar 

  • Zamanian K, Pustovoytov K, Kuzyakov Y (2016) Pedogenic carbonates: forms and formation processes. Earth Sci Rev 157:1–17

    Article  CAS  Google Scholar 

  • Zomer RJ, Bossio DA, Sommer R, Verchot LV (2017) Global sequestration potential of increased organic carbon in cropland soils. Sci Rep 7:15554. https://doi.org/10.1038/s41598-017-15794-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, K., Lal, R. (2018). Importance of Soils of Agroecosystems for Climate Change Policy. In: Carbon Sequestration in Agricultural Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-92318-5_9

Download citation

Publish with us

Policies and ethics