Skip to main content

Abstract

Total soil carbon (C) stock comprises of the soil organic C (SOC) and the soil inorganic C (SIC) components. The global SOC stock of ice-free land contains about 1,325–1,500 Pg (1 Pg = 1015 g) C in the top 1 m, 2,300 Pg C in the top 3 m, and 3,000 Pg C in the soil profiles. Up to 716 Pg SOC may be stored to 1 m depth in cropland, temperate grassland/shrubland, and tropical grassland/savannah. However, estimates of global terrestrial inventories have large uncertainties because of the fewer studies and lack of credible estimates of the SOC stocks in permafrost, peatlands, and subsoil horizons. The SIC stock, primarily occurring in soils of the arid regions, is estimated at 700–1,700 Pg C in the top 1-m of soil. The SIC stocks, probably more in soils of the temperate regions and in deeper layers, are not widely studied. The SIC consists of lithogenic inorganic C (LIC) or primary carbonates derived from soil parent material, and pedogenic inorganic C (PIC) or secondary carbonates formed through pedogenic processes. Climate, geology, and land management practices are principal controls of the magnitude of the soil C stock as they are determinants of the soil and vegetation type. The SIC stock can be sink, source, or neither relative to the atmospheric carbon dioxide (CO2). For example, an increase in SIC stock occurs after weathering of soluble Ca/Mg-bearing silicates followed by the precipitation of pedogenic carbonates. Ecosystems with annual net Ca-carbonate (calcite) dissolution are local geochemical sinks of atmospheric CO2 as bicarbonates move into the groundwater. With the mean residence time (MRT) of PIC at 85,000 years, it is much less dynamic than the SOC stock with MRT or mean turnover time of about 35 years. However, SIC and SOC interact with each other but underlying mechanisms are less well known. Carbon is sequestered in the SOC stock via the C inputs from photosynthetic fixation of atmospheric CO2 by vegetation, deposition, and the accumulation of stabilized SOC fractions, and the input of black carbon (BC) with charred biomass. The main C input into the soil is net primary production (NPP) as a major fraction of the CO2 fixed during plant photosynthesis by gross primary production (GPP) is respired autotrophically and returned back to the atmosphere. NPP enters soil by rhizodeposition and decomposition of plant litter, and a large fraction is converted back to CO2 by soil respiration and some lost as methane (CH4). Aside microbial decomposition , C losses from soils of agroecosystems are also associated with fire , erosion , leaching , and harvest. Thus, a small amount of fixed C remains in the soil and accumulates in the SOC stock through a combination of short- and long-term stabilization processes . Important among stabilization processes include physical protection of organic matter (OM) against decomposers and their enzymes, stabilization by organo-mineral complexes and organo-metal interactions, and some as biochemically recalcitrant BC. Soil aggregation and formation of organo-mineral complexes may be the most important stabilization process in topsoils of agroecosystems. Site-specific factors including climate, physicochemical characteristics, soil and vegetation management determine the balance between C input and losses. However, it is unclear whether and how SOC saturation may occur in soil profiles of agroecosystems. This chapter begins with a discussion about SIC dynamics and its sequestration in soils of agroecosystems. Then, the effects of agricultural practices on SIC are compared, and indirect effects of carbonates on soil C sequestration are discussed. The second subsection of this chapter discusses the SOC stock and its dynamics. First, photosynthesis and SOC input processes are discussed followed by a comparison of processes contributing to SOC loss from agricultural soils. The dynamics of SOC in the mineral soil, and stabilization and decomposition /destabilization processes are presented in detail. The importance of BC is discussed in the chapter about biochar. The concluding section discusses the importance of SOC to soil quality, ecosystem services, and food security. Research needs and some pertinent questions are summarized at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl S (2016) Rhizosphere, food security, and climate change: a critical role for plant-soil research. Rhizosphere 1:1–3

    Article  Google Scholar 

  • Ahmad W, Singh B, Dalal RC, Dijkstra FA (2015) Carbon dynamics from carbonate dissolution in Australian agricultural soils. Soil Res 53:144–153

    CAS  Google Scholar 

  • Ainsworth EA, McGrath JM (2010) Direct effects of rising atmospheric carbon dioxide and ozone on crop yields. In: Lobell D, Burke M (eds) Climate change and food security. Springer, Dordrecht, The Netherlands, pp 109–130

    Chapter  Google Scholar 

  • Alexander M (1965) Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv Appl Microbiol 7:35–80

    Article  PubMed  CAS  Google Scholar 

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  CAS  Google Scholar 

  • Amiotte Suchet PA, Probst JL, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cyc 17(2):1038. https://doi.org/10.1029/2002GB001891

    Article  CAS  Google Scholar 

  • Amthor JS (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959

    Article  CAS  PubMed  Google Scholar 

  • Anav A, Friedlingstein P, Beer C et al (2015) Spatiotemporal patterns of terrestrial gross primary production: a review. Rev Geophys 53:785–818. https://doi.org/10.1002/2015RG000483

    Article  Google Scholar 

  • Anderson-Teixeira KJ, DeLucia EH (2011) The greenhouse gas value of ecosystems. Glob Change Biol 17:425–438

    Article  Google Scholar 

  • Andreae MO (2004) Assessment of global emissions from vegetation fires. International Forest Fire News 31:112–121

    Google Scholar 

  • Angert A, Yakir D, Rodeghiero M, Preisler Y, Davidson EA, Weiner T (2015) Using O2 to study the relationships between soil CO2 efflux and soil respiration. Biogeosciences 12:2089–2099

    Article  CAS  Google Scholar 

  • Antle JM, Stoorvogel JJ (2009) Payments for ecosystem services, poverty and sustainability: the case of agricultural soil carbon sequestration. In: Lipper L, Sakuyama T, Stringer R, Zilberman D (eds) Payment for environmental services in agricultural landscapes. Springer, Dordrecht, The Netherlands, pp 133–161

    Chapter  Google Scholar 

  • Arneth A, Sitch S, Pongratz J et al (2017) Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat Geosci 10:79–86

    Article  CAS  Google Scholar 

  • Asner GP, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecol Biogeogr 12:191–205

    Article  Google Scholar 

  • Atomi H (2002) Microbial enzymes involved in carbon dioxide fixation. J Biosci Bioeng 94:497–505

    Article  PubMed  CAS  Google Scholar 

  • Aubrey DP, Teskey RO (2009) Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytol 184:35–40

    Article  PubMed  CAS  Google Scholar 

  • Aune J, Lal R (1997) Agricultural productivity in the tropics and critical limits of properties of oxisols, ultisols and alfisols. Trop Agric (Trinidad) 74:96–103

    Google Scholar 

  • Austin AT, Méndez MS, Ballaré CL (2016) Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc Natl Acad Sci USA 113:4392–4397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayres E, Wall DH, Bardgett RD (2009) Trophic interactions and their implications for soil carbon fluxes. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, UK, pp 187–206

    Google Scholar 

  • Bachmann J, Guggenberger G, Baumgartl Th, Ellerbrock R, Urbanek E, Goebel M-O, Kaiser K, Horn R, Fischer WR (2008) Physical carbon-sequestration mechanisms under special consideration of soil wettability. J Plant Nutr Soil Sci 171:14–26

    Article  CAS  Google Scholar 

  • Bahn M, Janssens IA, Reichstein M, Smith P, Trumbore SE (2010) Soil respiration across scales: towards an integration of patterns and processes. New Phytol 186:292–296

    Article  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, FL, pp B25–B84

    Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  PubMed  CAS  Google Scholar 

  • Barnes RT, Raymond PA (2009) The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem Geol 266:318–327

    Article  CAS  Google Scholar 

  • Barnes PW, Throop HL, Archer SR, Breshears DD, McCulley RL, Tobler MA (2015) Sunlight and soil–litter mixing: drivers of litter decomposition in drylands. In: Lüttge U, Beyschlag W (eds) Progress in botany 76. Springer Switzerland, pp 273–302

    Google Scholar 

  • Barré P, Durand H, Chenu C et al (2017) Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma 285:50–56

    Article  CAS  Google Scholar 

  • Barrett CB (2010) Measuring food insecurity. Science 327:825–828

    Article  PubMed  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Batjes NH (2016) Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269:61–68

    Article  CAS  Google Scholar 

  • Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62:569–591

    Article  Google Scholar 

  • Beare MH, McNeill SJ, Curtin D et al (2014) Estimating the organic carbon stabilisation capacity and saturation deficit of soils: a New Zealand case study. Biogeochemistry 120:71–87

    Article  CAS  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Altaf Arain M, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendal E, Viovy N, Williams C, Ian Woodward F, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    Article  CAS  PubMed  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin

    Book  Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    Article  PubMed  CAS  Google Scholar 

  • Billings SA, Buddemeier RW, deB Richter D, Van Oost K, Bohling G (2010) A simple method for estimating the influence of eroding soil profiles on atmospheric CO2. Global Biogeochem Cyc 24, GB2001. https://doi.org/10.1029/2009gb003560

    Article  CAS  Google Scholar 

  • Birkeland PW (1999) Soils and geomorphology. Oxford Univ Press, New York

    Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fert Soils 45:115–131

    Article  Google Scholar 

  • Blair N, Faulkner RD, Till AR, Körschens M, Schulz E (2006a) Long-term management impacts on soil C, N and physical fertility Part II: Bad Lauchstädt static and extreme FYM experiments. Soil Till Res 91:39–47

    Article  Google Scholar 

  • Blair N, Faulkner RD, Till AR, Poulton PR (2006b) Long-term management impacts on soil C, N and physical fertility Part I: broadbalk experiment. Soil Till Res 91:30–38

    Article  Google Scholar 

  • Bocock KL, Gilbert O (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 9:179–185

    Article  Google Scholar 

  • Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011) Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron 110:1–75

    Article  CAS  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–583

    Article  PubMed  CAS  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    Article  PubMed  CAS  Google Scholar 

  • Bone J, Head M, Barraclough D, Archer M, Scheib C, Flight D, Voulvoulis N (2010) Soil quality assessment under emerging regulatory requirements. Environ Int 36:609–622

    Article  PubMed  CAS  Google Scholar 

  • Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529

    Article  Google Scholar 

  • Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    Article  PubMed  CAS  Google Scholar 

  • Borrelli P, Robinson DA, Fleischer LR et al (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8:2013. https://doi.org/10.1038/s41467-017-02142-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bossuyt H, Six J, Hendrix PF (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol Biochem 37:251–258

    Article  CAS  Google Scholar 

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van Der Werf GR, Peylin P, Brunke E-G, Carouge C, Langenfelds RL, Lathière J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  PubMed  CAS  Google Scholar 

  • Bradford JB, Hicke JA, Lauenroth WK (2005) The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity. Remote Sense Environ 96:246–255

    Article  Google Scholar 

  • Braissant O, Verrecchia EP, Aragno M (2002) Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften 89:366–370

    Article  PubMed  CAS  Google Scholar 

  • Brilli L, Luca Bechini L, Bindi M et al (2017) Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Sci Tot Environ 598:445–470

    Article  CAS  Google Scholar 

  • Brookes PC, Chen YF, Chen L et al (2017) Is the rate of mineralization of soil organic carbon under microbiological control? Soil Biol Biochem 112:127–139

    Article  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci USA 107:12052–12057

    Article  PubMed  PubMed Central  Google Scholar 

  • Busch FA, Sage RF, Farquhar GD (2017) Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway. Nat Plants. https://doi.org/10.1038/s41477-017-0065-x

    Article  PubMed  Google Scholar 

  • Cailleau G, Braissant O, Verrecchia EP (2004) Biomineralization in plants as a long-term carbon sink. Naturwissenschaften 91:191–194

    Article  PubMed  CAS  Google Scholar 

  • Cameron DD (2010) Arbuscular mycorrhizal fungi as (agro)ecosystem engineers. Plant Soil 333:1–5

    Article  CAS  Google Scholar 

  • Campbell EE, Paustian K (2015) Current developments in soil organic matter modeling and the expansion of model applications: a review. Environ Res Lett 10:123004. https://doi.org/10.1088/1748-9326/10/12/123004

    Article  Google Scholar 

  • Campbell JE, Berry JA, Seibt U et al (2017) Large historical growth in global terrestrial gross primary production. Nature 544:84–87

    Article  PubMed  CAS  Google Scholar 

  • Canarini A, Kiær LP, Dijkstra FA (2017) Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis. Soil Biol Biochem 112:90–99

    Article  CAS  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  PubMed  CAS  Google Scholar 

  • Cerling T (1984) The stable isotopic composition of modern soil carbonate and its relation to climate. Earth Planet Lett 71:229–240

    Article  CAS  Google Scholar 

  • Chang J, Ciais P, Herrero M, Havlik P, Campioli M, Zhang X, Bai Y, Viovy N, Joiner J, Wang X, Peng S, Yue C, Piao S, Wang T, Hauglustaine DA, Soussana JF, Peregon A, Kosykh N, Mironycheva-Tokareva N (2016) Combining livestock production information in a pro-cess-based vegetation model to reconstruct the history of grassland management. Biogeo-sciences 13:3757–3776

    Article  Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380

    Article  CAS  Google Scholar 

  • Chapin FS III, Eviner VT (2014) Biogeochemical interactions governing terrestrial net primary production. In: Holland H, Turekian K (eds) Treatise on geochemistry. Elsevier, Amsterdam, Netherlands, pp 189–216

    Chapter  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chappell A, Baldock J, Sanderman J (2016) The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat Clim Change 6:187–191. https://doi.org/10.1038/NCLIMATE2829

    Article  CAS  Google Scholar 

  • Chen M, Rafique R, Asrar GR et al (2017) Regional contribution to variability and trends of global gross primary productivity. Environ Res Lett 12:105005

    Article  Google Scholar 

  • Chen S, Huang Y, Zou J et al (2010) Modeling interannual variability of global soil respiration from climate and soil properties. Agric For Meteorol 150:590–605

    Article  Google Scholar 

  • Chen T, van der Werf GR, Gobron N, Moors EJ, Dolman AJ (2014) Global cropland monthly gross primary production in the year 2000. Biogeosciences 11:3871–3880

    Article  Google Scholar 

  • Chen Z, Pawluk S, Ng Juma (1997) Impact of variations in granular structures on carbon sequestration in two Alberta mollisols. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, FL, pp 225–243

    Google Scholar 

  • Cheng L, Zhang L, Wang YP et al (2017) Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat Commun 8:110. https://doi.org/10.1038/s41467-017-00114-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christensen BT (1996) Carbon in primary and secondary organomineral complexes. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC Press, Boca Raton, FL, pp 97–165

    Google Scholar 

  • Churkina G, Zaehle S, Hughes J, Viovy N, Chen Y, Jung M, Heumann BW, Ramankutty N, Heimann M, Jones C (2010) Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosciences 7:2749–2764

    Article  CAS  Google Scholar 

  • Ciais P, Friedlingstein P, Friend A, Schimel DS (2001) Integrating global models of terrestrial primary productivity. In: Roy A, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, CA, pp 449–478

    Chapter  Google Scholar 

  • Ciais P, Soussana J-F, Vuichard N, Luyssaert S, Don A, Janssens IA, Piao SL, Dechow R, Lathière J, Maignan F, Wattenbach M, Smith P, Ammann C, Freibauer A, Schulze E-D, Synthesis Team CARBOEUROPE (2010a) The greenhouse gas balance of European grasslands. Biogeosciences Discuss 7:5997–6050

    Article  Google Scholar 

  • Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A, Luyssaert S, Janssens IA, Bondeau A, Dechow R, Leip A, Smith PC, Beer C, Van DerWerf GR, Gervois S, Van Oost K, Tomelleri E, Freibauer A, Schulze E-D, Synthesis Team CARBOEUROPE (2010b) The European carbon balance. Part 2: croplands. Glob Change Biol 16:1409–1428

    Article  Google Scholar 

  • Cihacek LJ, Ulmer MG (2002) Effects of tillage on inorganic carbon storage in soils of the northern great plains of the U.S. In: Kimble JM, Lal R, Folett RF (eds) Agricultural practices and policies for carbon sequestration in soil. Lewis Publishers, CRC Press, Boca Raton, Fl, pp 63–69

    Google Scholar 

  • Coleman K, Jenkinson DS (1995) ROTHC-26.3. A model for the turnover of carbon in soil. Model description and user’s guide. Lawes Agricultural Trust, Harpenden, UK

    Google Scholar 

  • Coops NC, Hilker T, Hall FG, Nichol CJ, Drolet GG (2010) Estimation of light-use efficiency f terrestrial ecosystems from space: a status report. Bioscience 60:788–797

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Victoria Vaieretti M, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Cotrufo MF, Del Galdo I, Piermatteo D (2009) Litter decomposition: concepts, methods and future perspectives. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, UK, pp 76–90

    Google Scholar 

  • Cramer W, Olson RJ, Prince SD, Scurlock JMO, Members of the Global Primary Production Data Initiative (2001) Determining present patterns of global productivity. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, CA, pp 429–448

    Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    Article  CAS  PubMed  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. WIREs Clim Change 2:45–65

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • de Graaff MA, Adkins J, Kardol P, Throop HL (2015) A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil 1:257–271

    Article  CAS  Google Scholar 

  • de Graaff MA, van Groenigen K-J, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091

    Article  Google Scholar 

  • Denef K, Six J (2006) Contributions of incorporated residue and living roots to aggregate-associated and microbial carbon in two soils with different clay mineralogy. Eur J Soil Sci 57:774–786

    Article  Google Scholar 

  • Denef K, Stewart CE, Brenner J, Paustian K (2008) Does long-term center-pivot irrigation increase soil carbon stocks in semi-arid agro-ecosystems? Geoderma 145:121–129

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Intergovernmental Panel on Climate Change (ed) Climate change 2007: the physical science basis, Chap. 7. Cambridge University Press, Cambridge

    Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbial Ecol 72:313–327

    Article  CAS  Google Scholar 

  • Díaz-Hernández JL (2010) Is soil carbon storage underestimated? Chemosphere 80:346–349

    Article  PubMed  CAS  Google Scholar 

  • Dietzel R, Liebman M, Archontoulis S (2017) A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool. SOIL 3:139–152

    Article  Google Scholar 

  • Doetterl S, Berhe AA, Nadeu E, Wang Z, Sommer M, Fiener P (2016) Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth Sci Rev 154:102–122

    Article  CAS  Google Scholar 

  • Don A, Böhme IH, Dohrmann AB, Poeplau C, Tebbe CC (2017) Microbial community composition affects soil organic carbon turnover in mineral soils. Biol Fertil Soils 53:445–456. https://doi.org/10.1007/s00374-017-1198-9

    Article  CAS  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17:1658–1670

    Article  Google Scholar 

  • Dong X, Hao Q, Li G, Lin Q, Zhao X (2017) Contrast effect of long-term fertilization on SOC and SIC stocks and distribution in different soil particle-size fractions. J Soils Sediments 17:1054–1063

    Article  CAS  Google Scholar 

  • Driscoll DA, Lindenmayer DB, Bennett AF, Bode M, Bradstock RA, Cary GJ, Clarke MF, Dexter N, Fensham R, Friend G, Gill M, James S, Kay G, Keith DA, MacGregor C, Russell-Smith J, Salt D, Watson JEM, Williams RJ, York A (2010) Fire management for biodiversity conservation: key research questions and our capacity to answer them. Biol Conserv 143:1928–1939

    Article  Google Scholar 

  • Dungait JA, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Change Biol 18:1781–1796

    Article  Google Scholar 

  • Duniway MC, Herrick JE, Monger HC (2007) The high water-holding capacity of petrocalcic horizons. Soil Sci Soc Am J 71:812–819

    Article  CAS  Google Scholar 

  • DuPont ST, Beniston J, Glover JD, Hodson A, Culman SW, Lal R, Ferris H (2014) Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat. Plant Soil 381:405–420

    Article  CAS  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  PubMed  CAS  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London

    Google Scholar 

  • Edwards DP, Lim F, James RH et al (2017) Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biol Lett 13:20160715. https://doi.org/10.1098/rsbl.2016.0715

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, Gleixner G, Hartmann A, Kästner M, Marhan S, Miltner A, Scheu S, Wolters V (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci 171:27–35

    Article  CAS  Google Scholar 

  • Elbert W, Weber B, Büdel B, Andreae MO, Pöschl U (2009) Microbiotic crusts on soil, rock and plants: neglected major players in the global cycles of carbon and nitrogen? Biogeosciences Discuss 6:6983–7015

    Article  Google Scholar 

  • Emmerich WE (2003) Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agr For Meteorol 116:91–102

    Article  Google Scholar 

  • Erb KH, Kastner T, Plutzar C et al (2018) Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553:73–76

    Article  CAS  PubMed  Google Scholar 

  • Eshel G, Fine P, Singer MJ (2007) Total soil carbon and water quality: an implication for carbon sequestration. Soil Sci Soc Am J 71:397–405

    Article  Google Scholar 

  • Eswaran H, Reich PF, Kimble JM (2000) Global carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, FL, pp 15–25

    Google Scholar 

  • Ewing SA, Sandermann J, Baisden WT, Wang Y, Amundson R (2006) Role of large-scale soil structure in organic carbon turnover: evidence from California grassland soils. J Geophys Res 111:G03012. https://doi.org/10.1029/2006JG000174

    Article  Google Scholar 

  • Falloon P, Smith P (2003) Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use Manage 19:265–269

    Article  Google Scholar 

  • Falloon P, Smith P (2009) Modelling soil carbon dynamics. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, UK, pp 221–244

    Google Scholar 

  • Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero-Casal C (2017) Hydrologic regulation of plant rooting depth. Proc Natl Acad Sci USA 114:10572–10577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • FAO Food and Agriculture Organization of the United Nations (1996) Rome declaration on world food security, FAO, Rome. http://www.fao.org/wfs/index_en.htm

  • Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Phil Trans R Soc B 323:357–367

    Article  CAS  Google Scholar 

  • Fauria MM, Michaletz ST, Johnson EA (2011) Predicting climate change effects on wildfires requires linking processes across scales. WIREs Clim Change 2:99–112

    Article  Google Scholar 

  • Feng X, Hills KM, Simpson AJ, Whalen JK, Simpson MJ (2011) The role of biodegradation and photo-oxidation in the transformation of terrigenous organic matter. Org Geochem 42:262–274

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Fisher J, Diggle A, Bowden B (2003) Quantifying the acid balance for broad-range agricultural systems. In: Rengel Z (ed) Handbook of soil acidity. CRC Press, Boca Raton, FL, pp 117–133

    Google Scholar 

  • Foereid B, Rivero MJ, Primo O, Ortiz I (2011) Modelling photodegradation in the global carbon cycle. Soil Biol Biochem 43:1383–1386

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–281

    Article  PubMed  CAS  Google Scholar 

  • Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Leps J, Robson M, Sternberg M, Theau J-P, Thébault A, Zarovali M (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611

    Article  PubMed  Google Scholar 

  • Fox O, Vetter S, Ekschmitt K, Wolters V (2006) Soil fauna modifies the recalcitrance-persistence relationship of soil carbon pools. Soil Biol Biochem 38:1353–1363

    Article  CAS  Google Scholar 

  • Franzluebbers AJ (2010) Will we allow soil carbon to feed our needs? Carbon Manage 1:237–251

    Article  CAS  Google Scholar 

  • Fridley JD, Grime JP, Bilton M (2007) Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland. J Ecol 95:908–915

    Article  Google Scholar 

  • Fujisaki K, Chapuis-Lardy L, Albrecht A et al (2018) Data synthesis of carbon distribution in particle size fractions of tropical soils: Implications for soil carbon storage potential in croplands. Geoderma 313:41–51

    Article  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria—a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  PubMed  Google Scholar 

  • Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayala J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Sec 2:197–214

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Zheng S (2000) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69

    Article  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  PubMed  CAS  Google Scholar 

  • Gifford RM (2003) Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol 30:171–186

    Article  PubMed  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Gill RA, Kelly RH, Parton WJ, Day KA, Jackson RB, Morgan JA, Scurlock JMO, Tieszen LL, Castle JV, Ojima DS, Zhang XS (2002) Using simple environmental variables to estimate belowground productivity in grasslands. Glob Ecol Biogeogr 11:79–86

    Article  Google Scholar 

  • Gilmanov TG, Aires L, Barcza Z, Baron VS, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, Gruenwald T, Guo H, Hanan N, Haszpra L, Heilman J, Jacobs A, Jones MB, Johnson DA, Kiely G, Li S, Magliulo V, Moors E, Nagy Z, Nasyrov M, Owensby C, Pinter K, Pio C, Reichstein M, Sanz MJ, Scott R, Soussana J-F, Stoy PC, Svejcar T, Tuba Z, Zhou G (2010) Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangeland Ecol Manage 63:16–39

    Article  Google Scholar 

  • Glanz JT (1995) Saving our soil: solutions for sustaining earth’s vital resource. Johnson Books, Boulder, CO, USA

    Google Scholar 

  • Goddard MA, Mikhailova EA, Post CJ, Schlautman MA, Galbraith JM (2009) Continental United States atmospheric wet calcium deposition and soil inorganic carbon stocks. Soil Sci Soc Am J 73:989–994

    Article  CAS  Google Scholar 

  • Goebel M-O, Woche SK, Bachmann J (2009) Do soil aggregates really protect encapsulated organic matter against microbial decomposition? Biologia 64:443–448

    Article  CAS  Google Scholar 

  • Gombert P (2002) Role of karstic dissolution in global carbon cycle. Global Planet Change 33:177–184

    Article  Google Scholar 

  • Goudriaan J, Groot JJR, Uithol PWJ (2001) Productivity of agro-ecosystems. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, CA, pp 301–313

    Chapter  Google Scholar 

  • Gray CM, Monson RK, Fierer N (2010) Emissions of volatile organic compounds during the decomposition of plant litter. J Geophys Res 115:G03015. https://doi.org/10.1029/2010JG001291

    Article  CAS  Google Scholar 

  • Greenhouse Gas Working Group (2010) Agriculture’s role in greenhouse gas emissions & capture. Madison, WI, USA, Greenhouse Gas Working Group Rep. ASA, CSSA, and SSSA

    Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385

    Article  CAS  Google Scholar 

  • Grover SP, Butterly CR, Wang X, Tang C (2017) The short-term effects of liming on organic carbon mineralization in two acidic soils as affected by different rates and application depths of lime. Biol Fertil Soils 53:431–443. https://doi.org/10.1007/s00374-017-1196-y

    Article  CAS  Google Scholar 

  • Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Baker JM, Griffis TJ (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci USA 14:E1327–E1333

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360

    Article  Google Scholar 

  • Guo D, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177:443–456

    Article  PubMed  CAS  Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–12947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Hamilton SK, Kurzman AL, Arango C, Jin L, Robertson GP (2007) Evidence for carbon sequestration by agricultural liming. Global Biogeochem Cy 21, GB2021. https://doi.org/10.1029/2006gb002738

  • Hammes K, Torn MS, Lapenas AG, Schmidt MWI (2008) Centennial black carbon turnover in a Russian steppe soil. Biogeosciences 5:1339–1350

    Article  CAS  Google Scholar 

  • Hanson DT, Stutz SS, Boyer JS (2016) Why small fluxes matter: the case and approaches for improving measurements of photosynthesis and (photo)respiration. J Exp Bot 67:3027–3039. https://doi.org/10.1093/jxb/erw139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS, LIDET (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Change Biol 15:1320–1338

    Google Scholar 

  • Hartmann J, Jansen N, Dürr HH, Kempe S, Köhler P (2009) Global CO2-consumption by chemical weathering: what is the contribution of highly active weathering regions? Glob Planet Change 69:185–194

    Article  Google Scholar 

  • Hashimoto S (2012) A new estimation of global soil greenhouse gas fluxes using a simple data-oriented model. Plos One 7:e41962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto S, Carvalhais N, Ito A et al (2015) Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12:4121–4132

    Article  Google Scholar 

  • Hawkes CV, Waring BG, Rocca JD, Kivlin SN (2017) Historical climate controls soil respiration responses to current soil moisture. Proc Natl Acad Sci USA 114:6322–6327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He L, Chen JM, Croft H, et al (2017) Nitrogen availability dampens the positive impacts of CO2 fertilization on terrestrial ecosystem carbon and water cycles. Geophys Res Lett 44:11,590–11,600. https://doi.org/10.1002/2017GL075981

    Article  CAS  Google Scholar 

  • Heitkötter J, Heinze S, Marschner B (2017) Relevance of substrate quality and nutrients for microbial C-turnover in top and subsoil of a Dystric Cambisol. Geoderma 302:89–99

    Article  CAS  Google Scholar 

  • Heldt H-W (2005) Plant biochemistry. Elsevier, San Diego

    Google Scholar 

  • Herbst M, Welp G, Macdonald A et al (2018) Correspondence of measured soil carbon fractions and RothC pools for equilibrium and non-equilibrium states. Geoderma 314:37–46

    Article  CAS  Google Scholar 

  • Hernes PJ, Kaiser K, Dyda RY, Cerli C (2013) Molecular trickery in soil organic matter: hidden lignin. Environ Sci Technol 47:9077–9085

    Article  PubMed  CAS  Google Scholar 

  • Herrick JE, Wander MM (1998) Relationships between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition and soil biological activity. In: Lal R, Kimble J, Follett J, Stewart BA (eds) Advances in soil science: soil processes and the carbon cycle. CRC Press, Boca Raton, FL, pp 405–425

    Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Hofmann A, Heim A, Christensen BT, Miltner A, Gehre M, Schmidt MWI (2009) Lignin dynamics in two 13C-labelled arable soils during 18 years. Eur J Soil Sci 60:205–257

    Article  CAS  Google Scholar 

  • Holland JE, Bennett AE, Newton AC et al (2017) Liming impacts on soils, crops and biodiversity in the UK: A review. Sci Tot Environ 610–611:316–332

    Google Scholar 

  • Hooper DU, Chapin FSIII, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hopkins DW, Waite IS, McNicol JW, Poulton PR, Macdonald AJ, O’Donnell AG (2009) Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Glob Change Biol 15:1739–1754

    Article  Google Scholar 

  • Horn R, Smucker A (2005) Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Till Res 82:5–14

    Article  Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  CAS  Google Scholar 

  • Houghton RA (2010) How well do we know the flux of CO2 from land-use change? Tellus 62B:337–351

    Article  CAS  Google Scholar 

  • Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochem Cycles 31:456–472. https://doi.org/10.1002/2016GB005546

    Article  CAS  Google Scholar 

  • House JI, Hall DO (2001) Productivity of tropical savannas and grasslands. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, CA, pp 363–400

    Chapter  Google Scholar 

  • Huang J, Minasny B, McBratney AB, Padariana J, Triantafilis J (2018) The location- and scale- specific correlation between temperature and soil carbon sequestration across the globe. Sci Tot Environ 615:540–548

    Article  CAS  Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593

    Article  Google Scholar 

  • Huo C, Luo Y, Cheng W (2017) Rhizosphere priming effect: a meta-analysis. Soil Biol Biochem 111:78–84

    Article  CAS  Google Scholar 

  • Hursh A, Ballantyne A, Cooper L et al (2017) The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob Change Biol 23:2090–2103

    Article  Google Scholar 

  • Huston MA, Wolverton S (2009) The global distribution of net primary production: resolving the paradox. Ecol Monogr 79:343–377

    Article  Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Ito A, Nishina K, Reyer CPO et al (2017) Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Environ Res Lett 12:085001. https://doi.org/10.1088/1748-9326/aa7a19

    Article  CAS  Google Scholar 

  • Ito A, Oikawa T (2004) Global mapping of terrestrial primary productivity and light-use efficiency with a process-based model. In: Shiyomi M, Kawahata H, Koizumi H, Tsuda A, Awaya Y (eds) Global environmental change in the ocean and on land. Terrabup, Tokyo, Japan, pp 343–358

    Google Scholar 

  • Jackson RB, Lajtha K, Crow SE et al (2017) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48:419–445

    Article  Google Scholar 

  • Jansen B, Wiesenberg GLB (2017) Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science. SOIL 3:211–234

    Article  Google Scholar 

  • Jansen N, Hartmann J, Lauerwald R, Dürr HH, Kempe S, Loos S, Middelkoop H (2010) Dissolved silica mobilization in the conterminous USA. Chem Geol 270:90–109

    Article  CAS  Google Scholar 

  • Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. BioScience 60:685–696

    Article  Google Scholar 

  • Janzen HH (2006) The soil carbon dilemma: shall we hoard it or use it? Soil Biol Biochem 38:419–425

    Article  CAS  Google Scholar 

  • Janzen HH (2015) Beyond carbon sequestration: soil as conduit of solar energy. Eur J Soil Sci 66:19–32

    Article  CAS  Google Scholar 

  • Jenkinson DS, Coleman K (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur J Soil Sci 59:400–413

    Article  Google Scholar 

  • Jiang GM, Noonan MJ, Buchan GD, Smith N (2005) Transport and deposition of Bacillus subtilis through an intact soil column. Aust J Soil Res 43:695–703

    Article  Google Scholar 

  • Jiang Y, Wang W, Xie Q et al (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Joergensen RG, Wichern F (2018) Alive and kicking: why dormant soil microorganisms matter. Soil Biol Biochem 116:419–430

    Article  CAS  Google Scholar 

  • Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol Rev 84:375–389

    Article  PubMed  Google Scholar 

  • Kantola IB, Masters MD, Beerling DJ, Long SP, DeLucia EH (2017) Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol Lett 13:20160714. https://doi.org/10.1098/rsbl.2016.0714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan JO, Krumhardt KM, Ellis RC, Ruddiman WF, Lemmen C, Klein Goldewijk K (2011) Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene in press

    Google Scholar 

  • Karlen DL, Ditzler CA, Andrews SS (2003) Soil quality: why and how? Geoderma 114:145–156

    Article  CAS  Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Kassam A, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agric Sustain 7:293–320

    Article  Google Scholar 

  • Keeley JE, Rundel PW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164:S55–S77

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Kleber M, Fendorf S (2016) Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry 127:157–171

    Article  CAS  Google Scholar 

  • Keiluweit M, Wanzek T, Kleber M, Nico P, Fendorf S (2017) Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat Commun 8:1771. https://doi.org/10.1038/s41467-017-01406-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelleher BP, Simpson AJ (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40:4605–4611

    Article  PubMed  CAS  Google Scholar 

  • Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell T, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass. Soil Biol Biochem 40:61–73

    Article  CAS  Google Scholar 

  • Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grûnwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moor E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17:1167–1185

    Article  Google Scholar 

  • Kleber M (2010a) What is recalcitrant soil organic matter? Environ Chem 7:320–332

    Article  CAS  Google Scholar 

  • Kleber M (2010b) Response to the Opinion paper by Margit von Lützow and Ingrid Kögel-Knabner on ‘What is recalcitrant soil organic matter?’ by Markus Kleber. Environ Chem 7:336–337

    Article  CAS  Google Scholar 

  • Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS (2015) Mineral–organic associations: formation, properties, and relevance in soil environments. Adv Agron 130:1–140

    Article  Google Scholar 

  • Kleber M, Johnson MG (2010) Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv Agron 106:77–142

    Article  CAS  Google Scholar 

  • Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Change Biol 17:1097–1107

    Article  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral associations in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Klotzbücher T, Klotzbücher A, Kaiser K et al (2018) Variable silicon accumulation in plants affects terrestrial carbon cycling by controlling lignin synthesis. Glob Change Biol 24:e183–e189. https://doi.org/10.1111/gcb.13845

    Article  Google Scholar 

  • Knacker T, Förster B, Römbke J, Frampton GK (2003) Assessing the effects of plant protection products on organic matter breakdown in arable fields-litter decomposition test systems. Soil Biol Biochem 35:1269–1287

    Article  CAS  Google Scholar 

  • Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. SOIL 1:351–365

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M et al (2008) Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82. https://doi.org/10.1002/jpln.200700048

    Article  CAS  Google Scholar 

  • Kong AYY, Six J, Bryant DC, Denison RF, van Kessel C (2005) The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J 69:1078–1085

    Article  CAS  Google Scholar 

  • Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38. https://doi.org/10.1029/2011gl048604

    Article  Google Scholar 

  • Kopittke PM, Dalal RC, Finn D, Menzies NW (2017) Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by long-term agricultural production. Glob Change Biol 23:2509–2519. https://doi.org/10.1111/gcb.13513

    Article  Google Scholar 

  • Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38:L01706. https://doi.org/10.1029/2010GL045777

    Article  Google Scholar 

  • Koukoura Z (1998) Decomposition and nutrient release from C3 and C4 plant litters in a natural grassland. Acta Oecol 19:115–123

    Article  Google Scholar 

  • Koven CD, Hugelius G, Lawrence DM, Wieder WR (2017) Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat Clim Change 7:817–824. https://doi.org/10.1038/NCLIMATE3421

    Article  CAS  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222

    Article  PubMed  Google Scholar 

  • Kunhikrishnan A, Thangarajan R, Bolan NS, Xu Y, Mandal S, Gleeson DB, Seshadri B, Zaman M, Barton L, Tang C, Luo J, Dalal R, Ding W, Kirkham MB, Naidu R (2016) Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv Agron 139:1–71

    Article  Google Scholar 

  • Kutsch WL, Aubinet M, Buchmann N, Smith P, Osborne B, Eugster W, Wattenbach M, Schrumpf M, Schulze ED, Tomelleri E, Ceschia E, Bernhofer C, Béziat P, Carrara A, Di Tommasi P, Grünwald T, Jones M, Magliulo V, Marloie O, Moureaux C, Olioso A, Sanz MJ, Saunders M, Sogaard H, Ziegler W (2010) The net biome production of full crop rotations in Europe. Agric Ecosyst Environ 139:336–345

    Article  Google Scholar 

  • Kutsch WL, Bahn M, Heinemeyer A (2009a) Soil carbon relations: an overview. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, U.K., pp 1–15

    Google Scholar 

  • Kutsch WL, Schimel J, Denef K (2009b) Measuring soil microbial parameters relevant for soil carbon fluxes. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, U.K., pp 169–186

    Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Shevtzova E, Pustovoytov K (2006) Carbonate re-crystallization in soil revealed by 14C labeling: experiment, model and significance for paleo-environmental reconstructions. Geoderma 131:45–58

    Article  CAS  Google Scholar 

  • Lal R (2001) World cropland soils as a source or sink for atmospheric carbon. Adv Agron 71:145–191

    Article  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004a) Carbon sequestration in dryland ecosystems. Environ Manage 33:528–544

    Article  PubMed  Google Scholar 

  • Lal R (2004b) Agricultural activities and the global carbon cycle. Nutr Cyc Agroecosyst 70:103–116

    Article  CAS  Google Scholar 

  • Lal R (2004c) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2004d) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2007) Farming carbon. Soil Till Res 96:1–5

    Article  Google Scholar 

  • Lal R (2009) Soils and food sufficiency. A review. Agron Sustain Dev 29:113–133

    Article  Google Scholar 

  • Lal R (2010a) Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Sec 2:169–177

    Article  Google Scholar 

  • Lal R (2010b) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience 60:708–721

    Article  Google Scholar 

  • Lal R (2010c) Enhancing eco-efficiency in agro-ecosystems through soil carbon sequestration. Crop Sci 50:S120–S131

    Article  CAS  Google Scholar 

  • Lal R, Follett RF (2009a) Preface. In: Lal R, Follett RF (eds) Soil carbon sequestration and the greenhouse effect. SSSA Special Publication 57, 2nd ed. Soil Science Society of America, Madison, WI, pp xi–xii

    Google Scholar 

  • Lal R, Follett RF (2009b) Soils and climate change. In: Lal R, Follett RF (eds) Soil carbon sequestration and the greenhouse effect. SSSA Special Publication 57, 2nd ed. Soil Science Society of America, Madison, WI, pp xxi–xxviii

    Google Scholar 

  • Lal R, Kimble JM (2000) Pedogenic carbonates and the global carbon cycle. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, FL, pp 291–302

    Google Scholar 

  • Lambers H, Robinson SA, Ribas-Carbo M (2005) Regulation of respiration in vivo. In: Lambers H, Ribas-Carbo M (eds) Plant respiration: from cell to ecosystem. Springer, Dordrecht, The Netherlands, pp 43–61

    Chapter  Google Scholar 

  • Lapenis AG, Lawrence GB, Bailey SW, Aparin BF, Shiklomanov AI, Speranskaya NA, Torn MS, Calef M (2008) Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon. Global Biogeochem Cy 22, GB2010. https://doi.org/10.1029/2007gb003077

    Article  CAS  Google Scholar 

  • Landi A, Mermut AR, Anderson DW (2003) Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada. Geoderma 117:143–156

    Article  CAS  Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51

    Article  PubMed  CAS  Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    Article  CAS  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Solomon D, Kinyangi J, Dathe L, Wirick S, Jacobsen C (2008) Spatial complexity of soil organic matter forms at nanometre scales. Nature Geosci 1:238–242

    Article  CAS  Google Scholar 

  • Lenton TM, Britton C (2006) Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Global Biogeochem Cy 20, GB3009. https://doi.org/10.1029/2005gb002678

    Article  CAS  Google Scholar 

  • Le Quéré C, Andrew RM, Friedlingstein P et al (2017) Global carbon budget 2017. Earth Syst Sci Data Discuss. https://doi.org/10.5194/essd-2017-123

    Article  Google Scholar 

  • Li Y, Zhang C, Wang N et al (2017) Substantial inorganic carbon sink in closed drainage basins globally. Nat Geosci 10:501–508

    Article  CAS  Google Scholar 

  • Liang C, Schimel JP, Jastrow JD (2017a) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105. https://doi.org/10.1038/nmicrobiol.2017.105

    Article  PubMed  CAS  Google Scholar 

  • Liang W, Lü Y, Zhang W et al (2017b) Grassland gross carbon dioxide uptake based on an im-proved model tree ensemble approach considering human interventions: global estimation and covariation with climate. Glob Change Biol 23:2720–2742. https://doi.org/10.1111/gcb.13592

    Article  Google Scholar 

  • Lin Y, Karlen SD, Ralph J, King JY (2018) Short-term facilitation of microbial litter decomposition by ultraviolet radiation. Sci Tot Environ 615:838–848

    Article  CAS  Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–417

    Article  Google Scholar 

  • Liu Z, Zhao J (2000) Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ Geol 39:1053–1058

    Article  CAS  Google Scholar 

  • Louis BP, Maron PA, Viaud V, Leterme P, Menasseri-Aubry S (2016) Soil C and N models that integrate microbial diversity. Environ Chem Lett 14:331–344. https://doi.org/10.1007/s10311-016-0571-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    Article  CAS  Google Scholar 

  • Loreto F, Kesselmeier J, Schnitzler JP (2008) Volatile organic compounds in the biosphere–atmosphere system: a preface. Plant Biol 10:2–7

    Article  PubMed  CAS  Google Scholar 

  • Loveland P, Webb J (2003) Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Till Res 70:1–18

    Article  Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S et al (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Feng W, Luo Y, Baldock J, Wang E (2017) Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob Change Biol 23:4430–4439. https://doi.org/10.1111/gcb.13767

    Article  Google Scholar 

  • Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot 66:2199–2210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macías F, Arbestain MC (2010) Soil carbon sequestration in a changing global environment. Mitig Adapt Strateg Glob Change 15:511–529

    Article  Google Scholar 

  • Mackey B, Prentice IC, Steffen W et al (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Change 3:552–557. https://doi.org/10.1038/NCLIMATE1804

    Article  CAS  Google Scholar 

  • Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217–233. https://doi.org/10.1016/j.agee.2006.07.011

    Article  Google Scholar 

  • Manzoni S, Porporato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41:1355–1379

    Article  CAS  Google Scholar 

  • Marchant BP, Villanneau EJ, Arrouays D, Saby NPA, Rawlins BG (2015) Quantifying and mapping topsoil inorganic carbon concentrations and stocks: approaches tested in France. Soil Use Manage 31:29–38

    Article  Google Scholar 

  • Marion GM, Verburg PS, McDonald EV, Arnone JA (2008) Modeling salt movement through a Mojave Desert soil. J Arid Environ 72:1012–1033

    Article  Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nature Geosci 1:697–702

    Article  CAS  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    Article  CAS  Google Scholar 

  • Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, San Diego, CA

    Google Scholar 

  • Martin A (1991) Short- and long-term effects of the endogenic earthworm Millsonia anomala (Omodeo) (Megascolecidae: Oligochaeta) of tropical savanna, on soil organic matter. Biol Fertil Soils 11:234–238

    Article  Google Scholar 

  • Mason-Jones K, Kuzyakov Y (2017) “Non-metabolizable” glucose analogue shines new light on priming mechanisms: triggering of microbial metabolism. Soil Biol Biochem 107:68–76

    Article  CAS  Google Scholar 

  • Mathieu J, Hatté C, Balesdent J, Parent E (2015) Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Glob Change Biolo 21:4278–4292. https://doi.org/10.1111/gcb.13012

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  PubMed  CAS  Google Scholar 

  • Matthews HD, Weaver AJ (2010) Committed climate warming. Nature Geosci 3:142–143

    Article  CAS  Google Scholar 

  • McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535

    Article  CAS  Google Scholar 

  • McNally SR, Beare MH, Curtin D et al (2017) Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand. Glob Change Biol 23:4544–4555. https://doi.org/10.1111/gcb.13720

    Article  Google Scholar 

  • MEA (2005) Millenium ecosystem assessment. In: Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Melillo JM, Frey SD, DeAngelis KM et al (2017) Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358:101–105

    Article  PubMed  CAS  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Metting FB, Smith JL, Amthor JS, Izaurralde RC (2001) Science needs and new technology for increasing soil carbon sequestration. Clim Change 51:11–34

    Article  Google Scholar 

  • Mikhailova EA, Post CJ (2006) Effects of land use on soil inorganic carbon stocks in the Russian Chernozem. J Environ Qual 35:1384–1388

    Article  PubMed  CAS  Google Scholar 

  • Mikhailova E, Post C, Cihacek L, Ulmer M (2009) Soil inorganic carbon sequestration as a result of cultivation in the Mollisols. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. Geophysical Monograph Series 183, American Geophysical Union, Washington, D.C., pp 129–133

    Chapter  Google Scholar 

  • Mikutta R, Mikutta C, Kalbitz K, Scheel T, Kaiser K, Jahn R (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim Cosmochim Ac 71:2569–2590

    Article  CAS  Google Scholar 

  • Milchunas DG (2009) Estimating root production: comparison of 11 methods in shortgrass steppe and review of biases. Ecosystems 12:1381–1402

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Miltner A, Kopinke F-D, Kindler R, Selesi D, Hartmann A, Kästner M (2005) Non-phototrophic CO2 fixation by soil microorganisms. Plant Soil 269:193–203

    Article  CAS  Google Scholar 

  • Ming DW (2006) Carbonates. In: Lal R (ed) Encyclopedia of soil science. Taylor & Francis, London, pp XXX–XXX

    Google Scholar 

  • Moinet GYK, Hunt JE, Kirschbaum MUF et al (2018) The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol Biochem 116:333–339

    Article  CAS  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cyc 22, GB1022. https://doi.org/10.1029/2007gb002947

    Article  CAS  Google Scholar 

  • Monger HC, Gallegos RA (2000) Biotic and abiotic processes and rates of pedogenic carbonate accumulation in the southwestern United States. Relationship to atmospheric CO2 sequestration. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC/Lewis Publishers, Boca Raton, Florida, pp 273–290

    Google Scholar 

  • Monger HC, Kraimer RA, Khresat S, Cole DR, Wang X, Wang J (2015) Sequestration of inorganic carbon in soil and groundwater. Geology 43:375–378

    Article  CAS  Google Scholar 

  • Moni C, Rumpel C, Virto I, Chabbi A, Chenu C (2010) Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils. Eur J Soil Sci 61:958–969

    Article  CAS  Google Scholar 

  • Monreal CM, Dinel H, Schnitzer M, Gamble DS, Biederbeck VO (1998) Impact of carbon sequestration on functional indicators of soil quality as influenced by management in sustainable agriculture. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, FL, pp 435–447

    Google Scholar 

  • Moore TR, Trofymow JA, Prescott CE, Titus BD, CIDET Working Group (2011) Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant Soil 339:163–175

    Article  CAS  Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Article  Google Scholar 

  • Moosdorf N, Renforth P, Hartmann J (2014) Carbon dioxide efficiency of terrestrial enhanced weathering. Environ Sci Technol 48:4809–4816

    Article  PubMed  CAS  Google Scholar 

  • Moran KK, Jastrow JD (2010) Elevated carbon dioxide does not offset loss of soil carbon from a corn–soybean agroecosystem. Environ Pollut 158:1088–1094

    Article  CAS  PubMed  Google Scholar 

  • Morriën E, Hannula SE, Snoek LB et al (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun 8:14349. https://doi.org/10.1038/ncomms14349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller L, Schindler U, Mirschel W, Sheperd G, Ball BC, Helming K, Rogaski J, Eulenstein F, Wiggering H (2010) Assessing the productivity function of soils. A review. Agron Sust Dev 30:601–614

    Article  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Newcomb CJ, Qafoku NP, Grate JW, Bailey VL, De Yoreo JJ (2017) Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding. Nat Commun 8:396. https://doi.org/10.1038/s41467-017-00407-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Nordt LC, Wilding LP, Drees LR (2000) Pedogenic carbonate transformations in leaching soil systems: implications for the global C cycle. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, FL, pp 43–64

    Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability, mechanisms and implications for management. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Oh N-H, Raymond PA (2006) Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin. Global Biogeochem Cy 20, GB3012. https://doi.org/10.1029/2005gb002565

    Article  CAS  Google Scholar 

  • Oldeman LR (1994) The global extent of soil degradation. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB International, Wallingford, Oxon, UK, pp 99–118

    Google Scholar 

  • Olmstead AL, Rhode PW (2011) Adapting North American wheat production to climatic challenges, 1839–2009. Proc Natl Acad Sci USA 108:480–485

    Article  CAS  PubMed  Google Scholar 

  • Osborne CP, Beerling DJ (2006) Review. Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Phil Trans Royal Soc B 361:173–194

    Article  CAS  Google Scholar 

  • Osborne CP, Freckleton RP (2009) Ecological selection pressures for C4 photosynthesis in the grasses. Proc R Soc B. https://doi.org/10.1098/rspb.2008.1762

  • Osler GHR, Sommerkorn M (2007) Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88:1611–1621

    Article  PubMed  Google Scholar 

  • Owen NA, Fahy KF, Griffiths H (2016) Crassulacean acid metabolism (CAM) offers sustainable bioenergy production and resilience to climate change. GCB Bioenerg 8:737–749

    Article  CAS  Google Scholar 

  • Page KL, Allen DE, Dalal RC, Slattery W (2009) Processes and magnitude of CO2, CH4, and N2O fluxes from liming of Australian acidic soils: a review. Austr J Soil Res 47:747–762

    Article  CAS  Google Scholar 

  • Papiernik SK, Lindstrom MJ, Schumacher TE, Schumacher JA, Malo DD, Lobb DA (2007) Characterization of soil profiles in a landscape affected by long-term tillage. Soil Till Res 93:335–345

    Article  Google Scholar 

  • Paradelo R, Virto I, Chenu C (2015) Net effect of liming on soil organic carbon stocks: a review. Agric Ecosyst Environ 202:98–107

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Paul EA (2016) The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biol Biochem 98:109–126

    Article  CAS  Google Scholar 

  • Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Change Biol 24:1–12. https://doi.org/10.1111/gcb.13850

    Article  Google Scholar 

  • Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA 107:19167–19170

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrin AS, Probst A, Probst JL (2008) Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales. Geochim Comochim Ac 72:3105–3123

    Article  CAS  Google Scholar 

  • Peyton Smith A, Bond-Lamberty B, Benscoter BW et al (2017) Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought. Nat Commun 8:1335. https://doi.org/10.1038/s41467-017-01320-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips CL, Bond-Lamberty B, Desai AR et al (2017) The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling. Plant Soil 413:1–25

    Article  CAS  Google Scholar 

  • Pinstrup-Andersen P (2009) Food security: definition and measurement. Food Sec 1:5–7

    Article  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Change Biol 17:2415–2427

    Article  Google Scholar 

  • Polyakov V, Lal R (2004) Modeling soil organic matter dynamics as affected by soil water erosion. Environ Int 30:547–556

    Article  PubMed  CAS  Google Scholar 

  • Poole P (2017) Shining a light on the dark world of plant root–microbe interactions. Proc Natl Acad Sci USA 114:4281–4283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porras RC, Hicks Pries CE, Torn MS, Nico PS (2018) Synthetic iron (hydr)oxide-glucose associations in subsurface soil: effects on decomposability of mineral associated carbon. Sci Tot Environ 613–614:342–351

    Article  CAS  Google Scholar 

  • Portmann FT, Siebert S, Döll P (2010) MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem Cy 24, GB101. https://doi.org/10.1029/2008gb003435

    Article  CAS  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Phil Trans R Soc B 365:2959–2971

    Article  PubMed  PubMed Central  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55

    Article  CAS  Google Scholar 

  • Prescott CE (2005) Do rates of litter decomposition tell us anything we really need to know? For Ecol Manage 220:66–74

    Article  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    Article  CAS  Google Scholar 

  • Pribyl DW (2010) A critical review of the conventional SOC to SOM conversion factor. Geoderma 156:75–83

    Article  CAS  Google Scholar 

  • Pritchard SG, Strand AE (2008) Can you believe what you see? Reconciling minirhizotron and isotopically derived estimates of fine root longevity. Plant Phytol 177:287–291

    Google Scholar 

  • Purin S, Rillig MC (2007) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiologia 51:123–130

    Article  CAS  Google Scholar 

  • Qian B, Gregorich EG, Gameda S, Hopkins DW, Wang XL (2011) Observed soil temperature trends associated with climate change in Canada. J Geophys Res 116:D02106. https://doi.org/10.1029/2010JD015012

    Article  Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci 3:311–314

    Article  CAS  Google Scholar 

  • Raich JW, Lambers H, Oliver DJ (2014) Respiration in terrestrial ecosystems. In: Holland H, Turekian K (eds) Treatise on geochemistry, vol 10. Biogeochemistry. Elsevier, Amsterdam, Netherlands, pp 613–648

    Chapter  Google Scholar 

  • Raich JW, Potter CS, Bhagawati D (2002) Interannual variability in global soil respiration, 1980–94. Glob Change Biol 8:800–812

    Article  Google Scholar 

  • Rasmussen J (2011) Why we need to restrict the use of “rhizodeposition” and the Janzen and Bruinsma equation. Soil Biol Biochem 43:2213–2214

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    Article  PubMed  CAS  Google Scholar 

  • Reay DS (2003) Sinking methane. Biologist 50:15–19

    PubMed  Google Scholar 

  • Rees RM, Bingham IJ, Baddeley JA, Watson CA (2005) The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128:130–154

    Article  CAS  Google Scholar 

  • Reichstein M, Falge E, Baldocchi DS et al (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm Glob Change Biol 11:1424–1439

    Google Scholar 

  • Richey JE (2004) Pathways of atmospheric CO2 through fluvial systems. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate, and the natural world. Island, Washington, D.C., pp 329–340

    Google Scholar 

  • Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299

    Article  CAS  Google Scholar 

  • Ritz K (1995) Growth responses of some fungi to spatially heterogeneous nutrients. FEMS Microbiol Ecol 16:269–280

    Article  CAS  Google Scholar 

  • Robinson D (2007) Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc R Soc B 274:2753–2759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosier CL, Hoye AT, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38:2205–2211

    Article  CAS  Google Scholar 

  • Rounsevell MDA, Evans SP, Bullock P (1999) Climate change and agricultural soils: impacts and adaptation. Clim Change 43:683–709

    Article  CAS  Google Scholar 

  • Rovira AD, Greacen EL (1957) The effect of aggregate disruption on the activity of microorganisms in soil. Austr J Agr Res 8:659–673

    Article  Google Scholar 

  • Roy J, Saugier B, Mooney HA (2001) Terrestrial global productivity. Academic Press, San Diego, CA

    Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse area began thousands of years ago. Clim Change 61:261–293

    Article  CAS  Google Scholar 

  • Ruddiman WF (2005) The early anthropogenic hypothesis a year later. Clim Change 69:427–434

    Article  CAS  Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1996) CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecol Res 26:1–68

    Google Scholar 

  • Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res 99:5263–5283

    Article  Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    Article  CAS  Google Scholar 

  • Rutledge S, Campbell DI, Baldocchi D, Schipper LA (2010) Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob Change Biol 16:3065–3074

    Google Scholar 

  • Sala OE (2001) Productivity of temperate grasslands. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, CA, pp 285–300

    Chapter  Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob Change Biol 16:416–426

    Article  Google Scholar 

  • Sanaullah M, Chabbi A, Leifeld J, Bardoux G, Billou D, Rumpel C (2011) Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference? Plant Soil 338:127–141

    Article  CAS  Google Scholar 

  • Sanderman J (2012) Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agric Ecosyst Environ 155:70–77

    Article  CAS  Google Scholar 

  • Sanderman J, Amundson R (2008) A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 89:309–327

    Article  Google Scholar 

  • Sanderman J, Baldock JA (2010) Accounting for soil carbon sequestration in national inventories: a soil scientist’s perspective. Environ Res Lett 5:034003

    Article  CAS  Google Scholar 

  • Sanderman J, Berhe AA (2017) The soil carbon erosion paradox. Nat Clim Change 7:317–319

    Article  Google Scholar 

  • Sanderman J, Farquharson R, Baldock J (2010) Soil carbon sequestration potential: a review for Australian agriculture—a report prepared for Department of Climate Change and Energy Efficiency, CSIRO Land and Water. http://www.csiro.au/resources/Soil-Carbon-Sequestration-Potential-Report.html

  • Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci USA Early Edition

    Article  CAS  Google Scholar 

  • Sarker TC, Incerti G, Spaccini R et al (2018) Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol Biochem 117:175–184

    Article  CAS  Google Scholar 

  • Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agr Ecosyst Environ 122:325–339

    Article  CAS  Google Scholar 

  • Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140

    Article  Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348. https://doi.org/10.3389/fmicb.2012.00348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schindler FV, Mercer EJ, Rice JA (2007) Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem 39:320–329

    Article  CAS  Google Scholar 

  • Schipper LA, Baisden WT, Parfitt RL, Ross W, Claydon JJ, Arnold G (2007) Large losses of soil C and N from soil profiles under pasture in New Zealand during the past 20 years. Glob Change Biol 13:1138–1144

    Article  Google Scholar 

  • Schipper LA, Parfitt RL, Ross W, Baisden WT, Claydon JJ, Fraser S (2010) Gains and losses in C and N stocks of New Zealand pasture soils depend on land use. Agric Ecosyst Environ 139:611–617

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego, CA

    Google Scholar 

  • Schlesinger WH (2000) Carbon sequestration in soils: some cautions amidst optimism. Agric Ecosys Environ 82:121–127

    Article  CAS  Google Scholar 

  • Schlesinger WH (2006) Inorganic carbon and the global C cycle. In: Lal R (ed) Encyclopedia of soil science. Taylor & Francis, London, pp 879–881

    Google Scholar 

  • Schlesinger WH (2017) An evaluation of abiotic carbon sinks in deserts. Glob Change Biol 23:25–27

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Schulze E-D, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Börner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Global Change Biol 16:1451–1469

    Article  Google Scholar 

  • Schulze E-D, Luyssaert S, Ciais P, Freibauer A, Janssens IA et al (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nature Geosci 2:842–850

    Article  CAS  Google Scholar 

  • Selesi D, Schmid M, Hartmann A (2005) Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microb 71:175–184

    Article  CAS  Google Scholar 

  • Senthilkumar S, Basso B, Kravchenko AN, Robertson GP (2009) Contemporary evidence of soil carbon loss in the U.S. corn belt. Soil Sci Soc Am J 73:2078–2086

    Article  CAS  Google Scholar 

  • Séquaris J-M, Guisado G, Magarinos M, Moreno C, Burauel P, Narres H-D, Vereecken H (2010) Organic-carbon fractions in an agricultural topsoil assessed by the determination of the soil mineral surface area. J Plant Nutr Soil Sci 173:699–705

    Article  CAS  Google Scholar 

  • Serna-Pérez A, Monger HC, Herrick JE, Murray L (2006) Carbon dioxide emissions from exhumed petrocalcic horizons. Soil Sci Soc Am J 70:795–805

    Article  CAS  Google Scholar 

  • Serrano-Ortiz P, Roland M, Sanchez-Moral S, Janssens IA, Domingo F, Goddéris Y, Kowalski AS (2010) Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: review and perspectives. Agr For Meteorol 150:321–329

    Article  Google Scholar 

  • Shibu ME, Leffelaar PA, Van Keulen H, Aggarwal PK (2006) Quantitative description of soil organic matter dynamics-A review of approaches with reference to rice-based cropping systems. Geoderma 137:1–18

    Article  CAS  Google Scholar 

  • Siletti CE, Zeiner CA, Bhatnagar JM (2017) Distributions of fungal melanin across species and soils. Soil Biol Biochem 113:285–293

    Article  CAS  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Article  PubMed  Google Scholar 

  • Sindelarova K, Granier C, Bouarar I et al (2014) Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos Chem Phys 14:9317–9341

    Article  CAS  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Sarkar B, Sarkar S et al (2018) Stabilization of soil organic carbon as influenced by clay mineralogy. Adv Agron. https://doi.org/10.1016/bs.agron.2017.11.001

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, de Moraes Sa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Smith KA, Conen F (2004) Impacts of land management on fuxes of trace greenhouse gases. Soil Use Manage 20:255–263

    Article  Google Scholar 

  • Smith P, Fang C (2010) A warm response by soils. Nature 464:499–500

    Article  PubMed  CAS  Google Scholar 

  • Smith P, Lutfalla S, Riley WJ et al (2018) The changing faces of soil organic matter research. Eur J Soil Sci 69:23–30. https://doi.org/10.1111/ejss.12500

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Phil Trans R Soc B 363:789–813

    Article  PubMed  CAS  Google Scholar 

  • Smith P, Olesen JE (2010) Synergies between the mitigation of, and adaptation to, climate change in agriculture. J Agric Sci 148:543–552

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 105:14239–14240

    Google Scholar 

  • Soper FM, McCalley CK, Sparks K, Sparks JP (2016) Soil carbon dioxide emissions from the Mojave Desert: isotopic evidence for a carbonate source. Geophys Res Lett 44:245–251

    Article  CAS  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford Univ Press, NewYork

    Google Scholar 

  • Stanbery CA, Pierce JL, Benner SG, Lohse K (2017) On the rocks: Quantifying storage of inorganic soil carbon on gravels and determining pedon-scale variability. Catena 157:436–442

    Article  CAS  Google Scholar 

  • Steffens M, Rogge DM, Mueller CW et al (2017) Identification of distinct functional microstructural domains controlling C storage in soil. Environ Sci Technol 51:12182–12189. https://doi.org/10.1021/acs.est.7b03715

    Article  PubMed  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York, NY

    Google Scholar 

  • Stewart CE, Plante AF, Paustian K, Conant RT, Six J (2008) Soil carbon saturation: linking concept and measurable carbon pools. Soil Sci Soc Am J 72:379–392

    Article  CAS  Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2007) Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86:19–31

    Article  CAS  Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2009) Soil carbon saturation: implications for measurable carbon pool dynamics in long-term incubations. Soil Biol Biochem 41:357–366

    Article  CAS  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Suarez DL (2000) Impact of agriculture on CO2 as affected by changes in inorganic carbon. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, FL, pp 257–272

    Google Scholar 

  • Sun Y, Frankenberg C, Wood JD, et al (2017) OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358:eaam5747. https://doi.org/10.1126/science.aam5747

    Article  PubMed  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963. https://doi.org/10.1111/j.1365-2435.2008.01402.x

    Article  Google Scholar 

  • Tao F, Zhang Z (2010) Adaptation of maize production to climate change in North China Plain: quantify the relative contributions of adaptation options. Eur J Agron 33:103–116

    Article  Google Scholar 

  • Taylor LT, Quirk J, Thorley RMS et al (2016) Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat Clim Change 6:402–408. https://doi.org/10.1038/NCLIMATE2882

    Article  CAS  Google Scholar 

  • Terrer C, Vicca S, Stocker BD et al (2018) Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol 217:507–522. https://doi.org/10.1111/nph.14872

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK (2007) A fifth pathway of carbon fixation. Science 318:1732–1733

    Article  PubMed  CAS  Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211

    Article  CAS  Google Scholar 

  • Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of natural organic matter in soil. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, New Jersey, USA, pp 219–272

    Chapter  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Treseder KK, Cross A (2006) Global distributions of arbuscular mycorrhizal fungi. Ecosystems 9:305–316

    Article  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA 94:8284–8291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T, Gower ST, Gregory M (2003) A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biol 9:383–395

    Article  Google Scholar 

  • U.S. Department of Energy (2008) Carbon cycling and biosequestration: integrating biology and climate through systems science. Report from the March 2008 Workshop, DOE/SC-108, U.S. Department of Energy Office of Science, http://genomicsgtl.energy.gov/carboncycle/

  • U.S. Environmental Protection Agency (2006) Global anthropogenic non-CO2 greenhouse gas emissions, 1990–2020. EPA Report 430-R-06-003, U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vancampenhout K, Wouters K, De Vos B, Buurman P, Swennen R, Deckers J (2009) Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions - a pyrolysis-GC/MS study. Soil Biol Biochem 41:568–579

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • van der Voort TS, Zell CI, Hagedorn F, et al (2017) Diverse soil carbon dynamics expressed at the molecular level. Geophys Res Lett 44:11,840–11,850. https://doi.org/10.1002/2017GL076188

  • van der Wal A, de Boer W (2017) Dinner in the dark: illuminating drivers of soil organic matter decomposition. Soil Biol Biochem 105:45–48

    Article  CAS  Google Scholar 

  • van Groenigen JW, Lubbers IM, Vos HMJ et al (2014) Earthworms increase plant production: a meta-analysis. Sci Rep 4:6365. https://doi.org/10.1038/srep06365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Groenigen JW, van Kessel C, Hungate BA et al (2017) Sequestering soil organic carbon: a nitrogen dilemma. Environ Sci Technol 51:4738–4739. https://doi.org/10.1021/acs.est.7b01427

    Article  PubMed  CAS  Google Scholar 

  • Van Hemelryck H, Fiener P, Van Oost K, Govers G (2009) The effect of soil redistribution on soil organic carbon: an experimental study. Biogeosci Discuss 6:5031–5071

    Article  Google Scholar 

  • Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques Da Silva JR, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629

    Article  PubMed  CAS  Google Scholar 

  • Van Pelt RS, Zobeck TM (2009) Carbonaceous materials in soil-derived dusts. In: Lal R, Follett RF (eds) Soil carbon sequestration and the greenhouse effect. SSSA Special Publication 57, 2nd ed. Soil Science Society of America, Madison, WI, pp 365–391

    Google Scholar 

  • Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidal A, Quenea K, Alexis M, Derenne S (2016) Molecular fate of root and shoot litter on incorporation and decomposition in earthworm casts. Org Geochem 101:1–10

    Article  CAS  Google Scholar 

  • Virto I, Antón R, Apesteguía M, Plante A (2018) Role of carbonates in the physical stabilization of soil organic matter in agricultural Mediterranean soils. In: Muñoz MÁ, Zornoza R (eds) Soil management and climate change. Academic Press, London, UK, pp 121–136

    Chapter  Google Scholar 

  • Von Lützow M, Kögel-Knabner I (2010) Response to the concept paper: ‘What is recalcitrant soil organic matter?’ by Markus Kleber. Environ Chem 7:333–335

    Article  CAS  Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • Vossbrinck CR, Coleman DC, Wooley TA (1979) Abiotic and biotic factors in litter decomposition in a semiarid grassland. Ecology 60:265–271

    Article  CAS  Google Scholar 

  • Wada Y (2016) Modeling groundwater depletion at regional and global scales: present state and future prospects. Surv Geophys 37:419–451. https://doi.org/10.1007/s10712-015-9347-x

    Article  Google Scholar 

  • Walker AP, Quaife T, van Bodegom PM et al (2017) The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. New Phytol 215:1370–1386. https://doi.org/10.1111/nph.14623

    Article  PubMed  CAS  Google Scholar 

  • Walker JCG (1980) The oxygen cycle. In: Hutzinger O (ed) The natural environment and the biogeochemical cycles. Springer, Berlin, pp 87–104

    Google Scholar 

  • Wander MM, Drinkwater LE (2000) Fostering soil stewardship through soil quality assessment. Appl Soil Ecol 15:61–73

    Article  Google Scholar 

  • Wang B, Lerdau M, He Y (2017a) Widespread production of nonmicrobial greenhouse gases in soils. Glob Change Biol 23:4472–4482. https://doi.org/10.1111/gcb.13753

    Article  Google Scholar 

  • Wang Z, Hoffmann T, Six J et al (2017b) Human-induced erosion has off set one-third of carbon emissions from land cover change. Nat Clim Change 7:345–350

    Article  CAS  Google Scholar 

  • Wang Z, Van Oost K, Govers G (2015) Predicting the long-term fate of buried organic carbon in colluvial soils. Global Biogeochem Cycles 29:65–79. https://doi.org/10.1002/2014GB004912

    Article  CAS  Google Scholar 

  • Watanabe Y, Stewart BW, Ohmoto H (2004) Organic- and carbonate-rich soil formation 2.6 billion years ago at Schagen, East Transvaal district, South Africa. Geochim Cosmochim Ac 68:2129–2151

    Article  CAS  Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56

    Article  PubMed  Google Scholar 

  • Wei S, Yi C, Fang W, Hendrey G (2017) A global study of GPP focusing on light-use efficiency in a random forest regression model. Ecosphere 8(5):e01724. https://doi.org/10.1002/ecs2.1724

    Article  Google Scholar 

  • West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agr Ecosyst Environ 108:145–154

    Article  CAS  Google Scholar 

  • Whalen JK, Sampedro L (2009) Primary production. In: Whalen JK, Sampedro L (ed) Soil ecology and management. CAB International, Wallingford, UK, pp 109–133

    Google Scholar 

  • White KE, Coale FJ, Reeves JB III (2018) Degradation changes in plant root cell wall structural molecules during extended decomposition of important agricultural crop and forage species. Org Geochem 115:233–245

    Article  CAS  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth Sci Rev 97:254–269

    Article  Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2004) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  Google Scholar 

  • Wolf J, West TO, Le Page Y et al (2015) Biogenic carbon fluxes from global agricultural production and consumption. Global Biogeochem Cycles 29:1617–1639. https://doi.org/10.1002/2015GB005119

    Article  CAS  Google Scholar 

  • Wolters V (2000) Invertebrate control of soil organic matter stability. Biol Fert Soils 31:1–19

    Article  CAS  Google Scholar 

  • Wood WW, Hyndman DW (2017) Groundwater depletion: a significant unreported source of atmospheric carbon dioxide. Earth’s Future 5. https://doi.org/10.1002/2017EF000586

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Wu H, Guo Z, Gao Q, Peng C (2009) Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China. Agr Ecosyst Environ 129:413–421

    Article  CAS  Google Scholar 

  • Wutzler T, Reichstein M (2007) Soils apart from equilibrium—consequences for soil carbon balance modelling. Biogeosciences 4:125–136

    Article  CAS  Google Scholar 

  • Wutzler T, Zaehle S, Schrumpf M, Ahrens B, Reichstein M (2017) Adaptation of microbial resource allocation affects modelled long term soil organic matter and nutrient cycling. Soil Biol Biochem 115:322–336

    Article  CAS  Google Scholar 

  • Xia L, Lam SK, Yan X, Chen D (2017) How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ Sci Technol 51:7450–7457

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Zhou X, Jiang L, Luo Y (2017) Effects of carbon turnover time on terrestrial ecosystem carbon storage. Biogeosciences 14:5441–5454

    Article  Google Scholar 

  • Young IM, Crawford JW, Nunan N, Otten W, Spiers A (2008) Microbial distribution in soils: physics and scaling. Adv Agron 100:81–121

    Article  Google Scholar 

  • Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatland dynamics since the last glacial maximum. Geophys Res Lett 37:L13402. https://doi.org/10.1029/2010GL043584

    Article  CAS  Google Scholar 

  • Yu G, Xiao J, Hu S et al (2017) Mineral availability as a key regulator of soil carbon storage. Environ Sci Technol 51:4960–4969

    Article  PubMed  CAS  Google Scholar 

  • Zamanian K, Pustovoytov K, Kuzyakov Y (2016) Pedogenic carbonates: forms and formation processes. Earth Sci Rev 157:1–17

    Article  CAS  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zhang Y, Xu M, Chen H, Adams J (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Global Ecol Biogeogr 18:280–290

    Article  Google Scholar 

  • Zhao Z, Peng C, Yang Q et al (2017) Model prediction of biome-specific global soil respiration from 1960 to 2012. Earth’s Future 5:715–729. https://doi.org/10.1002/2016EF000480

    Article  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman AR, Chorover J, Goyne KW, Brantley SL (2004) Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ Sci Technol 38:4542–4548

    Article  PubMed  CAS  Google Scholar 

  • Zsolnay Á (2003) Dissolved organic matter: artefacts, definitions, and functions. Geoderma 113:187–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, K., Lal, R. (2018). Soil Carbon Stock. In: Carbon Sequestration in Agricultural Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-92318-5_2

Download citation

Publish with us

Policies and ethics