Skip to main content

Agricultural Land Use and the Global Carbon Cycle

  • Chapter
  • First Online:

Abstract

Earth’s soils and the global carbon (C) cycle have been profoundly affected by agriculture. Agricultural land-use and land-cover change (LULCC) date back to the early Holocene ~12,000 years ago when hunter-gatherers in the Fertile Crescent region of the eastern Mediterranean began using agricultural practices to manage soils. Since then, agriculture has spread across the globe and is now the dominant global land use with about 40% of the ice-free land area covered by croplands and grasslands. Especially, clearing of natural vegetation to make room for cultivating crops has released up to one-third of the soil organic carbon (SOC) stock from the top meter of soil. However, effects on the soil inorganic carbon (SIC) stock continue to be overlooked. Further, methane (CH4) is produced in anaerobic environments under agricultural practices, such as the sediments of wetlands, peatlands, and rice (Oryza sativa L.) paddies as well as by livestock production. Globally, up to 357 Pg (1 Pg = 1 Gt = 1015g) C pre-1850 and 168 Pg C post-1850 may have been released by agricultural land-use changes. To 2 m depth, about 133 Pg SOC may have been lost since the early Holocene. LULCC emissions from 1850 to 2015 have been estimated at 98.4 and 16.3 Pg C for crop and pasture land uses, respectively. This net C release together with emissions of CH4 and nitrous oxide (N2O) has contributed to increasing atmospheric greenhouse gas (GHG) concentrations and accelerating climate change . Climate change interferes with agriculture with severe negative effects. Thus, climate change adaptation and mitigation are necessary to sustainably intensify production amidst the increasing challenge of satisfying the demands for food, feed, fiber, and fuel of a growing, more affluent, and more animal products consuming population. Food-related GHG emissions are lower for plant-based diets. Improved soil management in agroecosystems can substantially reduce GHG emissions and sequester some of the atmospheric carbon dioxide (CO2) as SOC and oxidize some of its CH4. Additional benefits of agroecosystems with increased SOC stocks are more healthy and resilient soils. The hidden treasure of SOC has finally been recognized by policymakers. For example, to help address food security and climate change issues, the 4 per Thousand Initiative (4p1000) was proposed in December 2015 at COP21 in Paris to enhance the soil C stock on a large portion of the world’s managed soils by an average annual increase of 0.4% in 0–40 cm depth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad W, Singh B, Dalal RC, Dijkstra FA (2015) Carbon dynamics from carbonate dissolution in Australian agricultural soils. Soil Res 53:144–153

    CAS  Google Scholar 

  • Alexander P, Brown C, Arneth A et al (2017a) Losses, inefficiencies and waste in the global food system. Agric Syst 153:190–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander P, Brown C, Arneth A et al (2017b) Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Glob Food Sec 15:22–32

    Article  Google Scholar 

  • Alexander P, Prestele R, Verburg PH et al (2017c) Assessing uncertainties in land cover projections. Glob Change Biol 23:767–781

    Article  Google Scholar 

  • Alexander P, Rounsevell MDA, Dislich C et al (2015) Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob Environ Change 35:138–147

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working Paper No. 12–03. FAO, Rome

    Google Scholar 

  • Allen MR, Barros VR, Broome J, et al (2014) In: Aldunce P, Downing T, Joussaume S, et al (eds) Climate change 2014: synthesis report. Approved Summary for Policymakers, Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Arneth A, Sitch S, Pongratz J et al (2017) Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat Geosci 10:79–86

    Article  CAS  Google Scholar 

  • Ascott MJ, Gooddy DC, Wang L et al (2017) Global patterns of nitrate storage in the vadose zone. Nat Commun 8:1416. https://doi.org/10.1038/s41467-017-01321-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auerswald K, Fischer FK, Kistler M et al (2018) Behavior of farmers in regard to erosion by water as reflected by their farming practices. Sci Tot Environ 613–614:1–9

    Article  CAS  Google Scholar 

  • Baker B (2017) Can modern agriculture be sustainable. BioSci 67:325–331

    Article  Google Scholar 

  • Balter M (2010) The tangled roots of agriculture. Science 327:404–406

    Article  PubMed  CAS  Google Scholar 

  • Behrens P, Kiefte-de Jong JC, Bosker T et al (2017) Evaluating the environmental impacts of dietary recommendations. Proc Natl Acad Sci USA 114:13412–13417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452

    Article  PubMed  Google Scholar 

  • Bennetzen EH, Smith P, Porter JR (2016a) Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob Change Biol 22:763–781. https://doi.org/10.1111/gcb.13120

    Article  Google Scholar 

  • Bennetzen EH, Smith P, Porter JR (2016b) Agricultural production and greenhouse gas emissions from world regions—the major trends over 40 years. Glob Environ Change 37:43–55

    Article  Google Scholar 

  • Bijl DL, Bogaart PW, Dekker SC et al (2017) A physically-based model of long-term food demand. Glob Environ Change 45:47–62

    Article  Google Scholar 

  • Billings SA, Buddemeier RW, deB Richter D, Van Oost K, Bohling G (2010) A simple method for estimating the influence of eroding soil profiles on atmospheric CO2. Global Biogeochem Cyc 24, GB2001, https://doi.org/10.1029/2009gb003560

    Article  CAS  Google Scholar 

  • Birney CI, Franklin KF, Davidson FT, Webber ME (2017) An assessment of individual foodprints attributed to diets and food waste in the United States. Environ Res Lett 12:105008

    Article  Google Scholar 

  • Blümel WD (2009) Natural climatic variations in the Holocene: past impacts on cultural history, human welfare and crisis. In: Brauch HG, et al (eds) Facing global environmental change. Environmental Human, Energy, Food, Health and Water Security Concepts. Springer Verlag, Berlin, Germany, pp 103–116

    Google Scholar 

  • Blunden J, Arndt DS (eds) (2017) State of the climate in 2016. Bull Amer Meteor Soc 98:Si–S277. https://doi.org/10.1175/2017bamsstateoftheclimate.1

  • Bogaard A, Fraser R, Heaton THE et al (2013) Crop manuring and intensive land management by Europe’s first farmers. Proc Natl Acad Sci USA 110:12589–12594

    Article  PubMed  PubMed Central  Google Scholar 

  • Borlaug N (2007) Feeding a hungry world. Science 318:359

    Article  PubMed  CAS  Google Scholar 

  • Borrelli P, Robinson DA, Fleischer LR et al (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8:2013. https://doi.org/10.1038/s41467-017-02142-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourzac K (2017) Solar upgrade. Nature 544:S11–S13

    Article  PubMed  CAS  Google Scholar 

  • Burke M, Emerick K (2016) Adaptation to climate change: evidence from US agriculture. Am Econ J Econ Pol 8:106–140

    Article  Google Scholar 

  • Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci USA 107:12052–12057

    Article  PubMed  PubMed Central  Google Scholar 

  • Butterbach-Bahl K, Wolf B (2017) Warming from freezing soils. Nat Geosci 10:248–249

    Article  CAS  Google Scholar 

  • Calvin K, Fisher-Vanden K (2017) Quantifying the indirect impacts of climate on agriculture: an inter-method comparison. Environ Res Lett 12:115004

    Article  Google Scholar 

  • Carter S, Herold M, Avitabile V et al (2018) Agriculture-driven deforestation in the tropics from 1990–2015: emissions, trends and uncertainties. Environ Res Lett 13:014002

    Article  Google Scholar 

  • Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett 12:064016

    Article  CAS  Google Scholar 

  • Cohn AS, Newton P, Gil JDB et al (2017) Smallholder agriculture and climate change. Annu Rev Environ Resour 42:347–375

    Article  Google Scholar 

  • Conijn JG, Bindraban PS, Schröder JJ, Jongschaap REE (2018) Can our global food system meet food demand within planetary boundaries? Agric Ecosyst Environ 251:244–256

    Article  CAS  Google Scholar 

  • Council for Agricultural Science and Technology (CAST) (2017) Plant breeding and genetics—A paper in the series on the need for agricultural innovation to sustainably feed the world by 2050. Issue Paper 57. CAST, Ames, Iowa

    Google Scholar 

  • Collard M, Edinborough K, Shennan S, Thomas MG (2010) Radiocarbon evidence indicates that migrants introduced farming to Britain. J Archaeolog Sci 37:866–870

    Article  Google Scholar 

  • Craine JM, Elmore A, Angerer JP (2017) Long-term declines in dietary nutritional quality for North American cattle. Environ Res Lett 12:044019

    Article  CAS  Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The “Anthropocene” IGBP Newsl 41:12–14

    Google Scholar 

  • d’Amour CB, Reitsma F, Baiocchi G et al (2017) Future urban land expansion and implications for global croplands. Proc Natl Acad Sci USA 114:8939–8944

    Article  CAS  Google Scholar 

  • Davis KF, Rulli MC, Seveso A, D’Odorico P (2017) Increased food production and reduced water use through optimized crop distribution. Nat Geosci 10:919–924. https://doi.org/10.1038/s41561-017-0004-5

    Article  CAS  Google Scholar 

  • D’Odorico P, Rulli MC (2014) The land and its people. Nat Geosci 7:324–325

    Article  CAS  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17:1658–1670

    Article  Google Scholar 

  • Dunne J, Evershed RP, Salque M et al (2012) First dairying in green Saharan Africa in the fifth millennium BC. Nature 486:390–394

    Article  PubMed  CAS  Google Scholar 

  • Editorial Nature Plants (2017) Saving the world. Nat Plants 3:17069. https://doi.org/10.1038/nplants.2017.69

  • Eglin T, Ciais P, Piao SL et al (2010) Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus 62B:700–718

    Article  CAS  Google Scholar 

  • Ellis EC, Fuller DQ, Kaplan JO, Lutters WG (2013) Dating the Anthropocene: towards an empirical global history of human transformation of the terrestrial biosphere. Elem Sci Anth 1:18. http://doi.org/10.12952/journal.elementa.000018

    Google Scholar 

  • Erb KH, Kastner T, Plutzar C et al (2018) Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553:73–76

    Article  PubMed  CAS  Google Scholar 

  • FAO Food and Agriculture Organization of the United Nations (2015) Statistical Pocketbook 2015. FAO, Rome

    Google Scholar 

  • FAO Food and Agriculture Organization of the United Nations (2016) The state of food and agriculture 2016. FAO, Rome

    Google Scholar 

  • FAO Food and Agriculture Organization of the United Nations (2017) The future of food and agriculture—trends and challenges. FAO, Rome

    Google Scholar 

  • Figueres C, Schellnhuber HJ, Whiteman G et al (2017) Three years to safeguard our climate. Nature 546:593–595

    Article  PubMed  CAS  Google Scholar 

  • Fischer G, Tramberend S, Bruckner M, Lieber M (2017) Quantifying the land footprint of Germany and the EU using a hybrid accounting model. Umweltbundesamt [Ferderal Environment Agency] TEXTE 78/2017. https://www.umweltbundesamt.de/publikationen/quantifying-the-land-footprint-of-germany-the-eu

  • Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Frank S, Havlík P, Soussana JF et al (2017) Reducing greenhouse gas emissions in agriculture without compromising food security? Environ Res Lett 12:105004

    Article  Google Scholar 

  • Frieler K, Schauberger B, Arneth A et al (2017) Understanding the weather signal in national crop-yield variability. Earth’s Future 5:605–616. https://doi.org/10.1002/2016EF000525

    Article  Google Scholar 

  • Fuglie KO, Ball VE, Wang SL, eds (2012) Productivity growth in agriculture: an international perspective. CABI, Cambridge, MA

    Google Scholar 

  • Fuller DQ, van Etten J, Manning K et al (2011) The contribution of rice agriculture and livestock to prehistoric methane levels: An archeological assessment. Holocene 21:743–759

    Article  Google Scholar 

  • Ganesan M, Lee HY, Kim JI, Song PS (2017) Development of transgenic crops based on photobiotechnology. Plant Cell Environ 40:2469–2486. https://doi.org/10.1111/pce.12887

    Article  PubMed  CAS  Google Scholar 

  • Gaud WS (1968) The green revolution: accomplishments and apprehensions. AgBioWorld. http://www.agbioworld.org/biotech-info/topics/borlaug/borlaug-green.html

  • Gibbons A (2016) First farmers’ motley roots. Science 353:207–208

    Article  PubMed  CAS  Google Scholar 

  • Glover JD, Reganold JP, Bell LW et al (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639. https://doi.org/10.1126/science.1188761

    Article  PubMed  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Govers G, Van Oost K, Wang Z (2014) Scratching the critical zone: the global footprint of agricultural soil erosion. Proc Earth Plan Sci 10:313–318

    Article  Google Scholar 

  • Govers G, Merckx R, van Wesemael B, Van Oost K (2017) Soil conservation in the 21st century: why we need smart agricultural intensification. SOIL 3:45–59

    Article  Google Scholar 

  • Griffis TJ, Chen Z, Baker JM et al (2017) Nitrous oxide emissions are enhanced in a warmer and wetter world. Proc Natl Acad Sci USA 114:12081–12085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruber K (2017) The living library. Nature 544:S8–S10

    Article  PubMed  CAS  Google Scholar 

  • Gupta AK (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr Sci 87:54–59

    Google Scholar 

  • Haak W, Balanovsky O, Sanchez JJ, Koshel S, Zaporozhchenko V, Adler CJ, Der Sarkissian CSI, Brandt G, Schwarz C, Nicklisch N, Dresely V, Fritsch B, Balanovska E, Villems R, Meller H, Alt KW, Cooper A, the Genographic Consortium (2010) Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol 8(11):e1000536. https://doi.org/10.1371/journal.pbio.1000536

    Article  CAS  Google Scholar 

  • Hall C, Dawson TP, Macdiarmid JI, Matthews RB, Smith P (2017) The impact of population growth and climate change on food security in Africa: looking ahead to 2050. Int J Agric Sustain 15:124–135

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P et al (2017) Young people’s burden: requirement of negative CO2 emissions. Earth Syst Dynam 8:577–616

    Article  Google Scholar 

  • Hartmann J, West AJ, Renforth P et al (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev Geophys 51:113–149. https://doi.org/10.1002/rog.20004

    Article  Google Scholar 

  • Herrero M, Havlík P, Valin H et al (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci USA 110:20888–20893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofmanová Z, Kreutzer S, Hellenthal G et al (2016) Early farmers from across Europe directly descended from Neolithic Aegeans. Proc Natl Acad Sci USA 113:6886–6891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houghton RA (2010) How well do we know the flux of CO2 from land-use change? Tellus 62B:337–351

    Article  CAS  Google Scholar 

  • Houghton RA (2014) The contemporary carbon cycle. In: Holland H, Turekian K (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, Netherlands, pp 399–435

    Chapter  Google Scholar 

  • Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles 31:456–472

    Article  CAS  Google Scholar 

  • Howden SM, Soussana J-F, Tubiello FN et al (2007) Adapting agriculture to climate change. Proc Natl Acad Sci 104:19691–19696

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA (2017) Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67:386–391. https://doi.org/10.1093/biosci/bix010

    Article  Google Scholar 

  • Izumi T, Ramankutty N (2016) Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ Res Lett 11:034003

    Article  Google Scholar 

  • Ju H, van der Velde M, Lin E, Xiong W, Li Y (2013) The impacts of climate change on agricultural production systems in China. Clim Change 120:313–324

    Article  Google Scholar 

  • Kane D, Rogé P, Snapp S (2016) A systemic review of perennial staple crops literature using topic modeling and bibliometric analysis. PLoS ONE 11:e0155788. https://doi.org/10.1371/journal.pone.0155788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanter DR, Zhang X, Mauzerall DL, Malyshev S, Shevliakova E (2016) The importance of climate change and nitrogen use efficiency for future nitrous oxide emissions from agriculture. Environ Res Lett 11:094003. https://doi.org/10.1088/1748-9326/11/9/094003

    Article  CAS  Google Scholar 

  • Kaplan JO, Krumhardt KM, Ellis RC, Ruddiman WF, Lemmen C, Klein Goldewijk K (2010) Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene 21:775–791

    Article  Google Scholar 

  • Kesavan PC, Swaminathan MS (2008) Strategies and models for agricultural sustainability in developing Asian countries. Philos Trans R Soc B 363:877–891

    Article  CAS  Google Scholar 

  • King A (2017) The future of agriculture. Nature 544:S21–S23

    Article  PubMed  CAS  Google Scholar 

  • Kluyver TA, Jones G, Pujol B et al (2017) Unconscious selection drove seed enlargement in vegetable crops. Evolution Letters 1–2:64–72. https://doi.org/10.1002/evl3.6

    Article  Google Scholar 

  • Kromdijk J, Głowacka K, Leonelli L et al (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2016) Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food Energ Sec 5:239–251. https://doi.org/10.1002/fes3.99

    Article  Google Scholar 

  • Lal R (2017) Improving soil health and human protein nutrition by pulses-based cropping systems. Adv Agron 145:167–204

    Article  Google Scholar 

  • Larson G, Piperno DR, Allaby RG et al (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci USA 111:6139–6146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116

    Article  PubMed  Google Scholar 

  • Leng G (2017) Recent changes in county-level corn yield variability in the United States from observations and crop models. Sci Tot Environ 607–608:683–690. https://doi.org/10.1016/j.scitotenv.2017.07.017

    Article  CAS  Google Scholar 

  • Le Quéré C, Andrew RM, Friedlingstein P et al (2017) Global carbon budget 2017. Earth Syst Sci Data Discuss. https://doi.org/10.5194/essd-2017-123

    Article  Google Scholar 

  • Levis C, Costa FRC, Bongers F et al (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355:925–931

    Article  PubMed  CAS  Google Scholar 

  • Li W, Ciais P, Peng S et al (2017) Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences 14:5053–5067

    Article  Google Scholar 

  • Liang XZ, Wu Y, Chambers RG et al (2017) Determining climate effects on US total agricultural productivity. Proc Natl Acad Sci USA 114:E2285–E2292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin HW, Jin Y, Giglio L, Foley JA, Randerson JT (2012) Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires. Ecol Appl 22:1345–1364

    Article  PubMed  Google Scholar 

  • Lipson M, Szécsényi-Nagy A, Mallick S et al (2017) Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551:368–372. https://doi.org/10.1038/nature24476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Article  Google Scholar 

  • Lobell DB, Tebaldi C (2014) Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ Res Lett 9:074003

    Article  Google Scholar 

  • Long SP, Marshall-Colon A, Zhu XG (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66

    Article  PubMed  CAS  Google Scholar 

  • Loos J, Abson DJ, Chappell MJ et al (2014) Putting meaning back into “sustainable intensification”. Front Ecol Environ 12:356–361

    Article  Google Scholar 

  • Lorenz K, Lal R (2014) Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J Plant Nutr Soil Sci 177:651–670

    Article  CAS  Google Scholar 

  • Luo XS, Muleta D, Hu Z et al (2017) Inclusive development and agricultural adaptation to climate change. Curr Op Environ Sustain 24:78–83

    Article  Google Scholar 

  • Lynch JP (2007) Turner review no.14. Roots of the second green revolution. Aust J Bot 55:493–512. https://doi.org/10.1071/BT06118

    Article  Google Scholar 

  • Mackey B, Prentice IC, Steffen W et al (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Change 3:552–557. https://doi.org/10.1038/NCLIMATE1804

    Article  CAS  Google Scholar 

  • Manders T, Chateau J, Magné B, et al (2012) Socio-economic developments. In: OECD (ed) OECD environmental outlook to 2050: the consequences of inaction. OECD Publishing, Paris

    Google Scholar 

  • Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–1201

    Article  PubMed  CAS  Google Scholar 

  • Martellozzo F, Ramankutty N, Hall RJ et al (2015) Urbanization and the loss of prime farmland: a case study in the Calgary-Edmonton corridor of Alberta. Reg Environ Change 15:881–893

    Article  Google Scholar 

  • Mazoyer M, Roudart L (2006) A history of world agriculture. Monthly Review Press, New York

    Google Scholar 

  • Monger HC, Kraimer RA, Khresat S, Cole DR, Wang X, Wang J (2015) Sequestration of inorganic carbon in soil and groundwater. Geology 43:375–378

    Article  CAS  Google Scholar 

  • Mottet A, de Haan C, Falcucci A et al (2017) Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob Food Secur 14:1–8

    Article  Google Scholar 

  • Mukherjee A, Lal R (2014) The biochar dilemma. Soil Res 52:217–230

    Article  CAS  Google Scholar 

  • Muller A, Schader C, El-Hage Scialabba N et al (2017) Strategies for feeding the world more sustainably with organic agriculture. Nat Commun 8:1290. https://doi.org/10.1038/s41467-017-01410-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myhre G, Shindell D, Bréon FM, et al. (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner GK, et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Nyawira SS, Nabel JMES, Brovkin V, Pongratz J (2017) Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change. Environ Res Lett 12:084015

    Article  CAS  Google Scholar 

  • Ort DR, Merchant SS, Alric J et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112:8529–8536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paustian K, Lehmann J, Ogle S et al (2016) Climate-smart soils. Nature 532:49–57

    Article  PubMed  CAS  Google Scholar 

  • Pereira JB, Costa MD, Vieira D et al (2017) Reconciling evidence from ancient and contemporary genomes: a major source for the European Neolithic within Mediterranean Europe. Proc R Soc B 284:20161976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petersen B, Snapp S (2015) What is sustainable intensification? Views from experts. Land Use Pol 46:1–10

    Article  Google Scholar 

  • Phalan B, Green RE, Dicks LV et al (2016) How can higher-yield farming help to spare nature? Science 351:450–451. https://doi.org/10.1126/science.aad0055

    Article  PubMed  CAS  Google Scholar 

  • Pingali PL (2012) Green Revolution: Impacts, limits, and the path ahead. Proc Natl Acad Sci USA 109:12302–12308

    Article  PubMed  PubMed Central  Google Scholar 

  • Piperno DR (2011) The origins of plant cultivation and domestication in the New World Tropics: Patterns, process, and new developments. Curr Anthropol 52:S453–S470

    Article  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Change Biol 17:2415–2427

    Article  Google Scholar 

  • Ponisio LC, M’Gonigle LK, Mace KC et al (2015) Diversification practices reduce organic to conventional yield gap. Proc R Soc B 282:20141396. https://doi.org/10.1098/rspb.2014.1396

    Article  PubMed  PubMed Central  Google Scholar 

  • Porfirio LL, Newth D, Harman IN, Finnigan JJ, Cai Yiyong (2017) Patterns of crop cover under future climates. Ambio 46:265–276

    Article  PubMed  Google Scholar 

  • Porter JR, Xie L, Challinor AJ, et al. (2014) Food security and food production systems. In: IPCC. 2014. Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA, pp 485–533

    Google Scholar 

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114:1571–1596

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretty J, Noble AD, Bossio D, Dixon J et al (2006) Resource-conserving agriculture increases yields in developing countries. Environ Sci Technol 3:24–43

    Google Scholar 

  • Pretty J, Sutherland WJ, Ashby J et al (2010) The top 100 questions of importance to the future of global agriculture. Int J Agric Sustain 8:219–236

    Article  Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci 3:311–314

    Article  CAS  Google Scholar 

  • Rabin SS, Magi BI, Shevliakova E, Pacala SW (2015) Quantifying regional, time-varying effects of cropland and pasture on vegetation fire. Biogeosciences 12:6591–6604

    Article  CAS  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cyc 22:GB1003. https://doi.org/10.1029/2007gb002952

    Article  CAS  Google Scholar 

  • Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC (2012) Global burned area and biomass burning emissions from small fires. J Geophys Res 117:G04012

    Article  CAS  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Crop yield trends are insufficient to double global food production by 2050. PLoSONE 8:e66428

    Article  CAS  Google Scholar 

  • Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2. http://dx.doi.org/10.1038/NPlants.2015.221

  • Reynolds MP, Braun HJ, Cavalieri AJ et al (2017) Improving global integration of crop research. Science 357:359–360

    Article  PubMed  CAS  Google Scholar 

  • Richards MB, Wollenberg E, Buglion-Gluck S (2015) Agriculture’s contributions to national emissions. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen

    Google Scholar 

  • Richerson PJ, Boyd R, Bettinger RL (2001) Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. Am Antiq 66:387–411

    Article  Google Scholar 

  • Roberts P, Hunt C, Arroyo-Kalin M, Evans D, Boivin N (2017) The deep human prehistory of global tropical forests and its relevance for modern conservation. Nature Plants 3:17093. https://doi.org/10.1038/nplants.2017.93

    Article  PubMed  Google Scholar 

  • Robinson DA, Panagos P, Borrelli P et al (2017) Soil natural capital in Europe; a framework for state and change assessment. Sci Rep. https://doi.org/10.1038/s41598-017-06819-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Rockström J, Williams J, Daily G et al (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46:4–17

    Article  PubMed  Google Scholar 

  • Rosenzweig C, Elliott J, Deryn D et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 111:3268–3273

    Article  PubMed  CAS  Google Scholar 

  • Royal Society of London (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture. Royal Society, London

    Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse area began thousands of years ago. Clim Change 61:261–293

    Article  CAS  Google Scholar 

  • Ruddiman WF (2013) The anthropocene. Annu Rev Earth Planet Sci 41:45–68

    Article  CAS  Google Scholar 

  • Ruddiman WF, Fuller DQ, Kutzbach JE et al (2016) Late Holocene climate: natural or anthropogenic? Rev Geophys 54:93–118

    Article  Google Scholar 

  • Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci USA 114:9575–9580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sardans J, Grau O, Chen HYH et al (2017) Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob Change Biol 23:3849–3856. https://doi.org/10.1111/gcb.13721

    Article  Google Scholar 

  • Sayer J, Cassman KG (2013) Agricultural innovation to protect the environment. Proc Natl Acad Sci USA 110:8345–8348

    Article  PubMed  PubMed Central  Google Scholar 

  • Seto KC, Ramankutty N (2016) Hidden linkages between urbanization and food systems. Science 352:943–945

    Article  PubMed  CAS  Google Scholar 

  • Seufert V, Ramankutty N (2017) Many shades of gray—the context-dependent performance of organic agriculture. Sci Adv 3:e1602638

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha E, Michalak AM, Balaji V (2017) Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357:405–408

    Article  PubMed  CAS  Google Scholar 

  • Siska V, Jones ER, Jeon S et al (2017) Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago. Sci Adv 3:e1601877

    Article  PubMed  PubMed Central  Google Scholar 

  • Smit B, Skinner MW (2002) Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strateg Glob Change 7:85–114

    Article  Google Scholar 

  • Smith KA (2017) Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales. Europ J Soil Sci 68:137–155

    Article  CAS  Google Scholar 

  • Smith O, Momber G, Bates R et al (2015) Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago. Science 347:998–1001

    Article  PubMed  CAS  Google Scholar 

  • Smith P (2016) Soil carbon sequestration and biochar as negative emission technologies. Glob Change Biol 22:1315–1324

    Article  Google Scholar 

  • Smith P, Bustamante M, Ahammad H, et al. (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 811–922

    Google Scholar 

  • Smith P, Gregory PJ, van Vuuren D et al (2010) Competition for land. Phil Trans R Soc B 365:2941–2957

    Article  PubMed  PubMed Central  Google Scholar 

  • Smithers J, Blay-Palmer A (2001) Technology innovation as a strategy for climate adaptation in agriculture. Appl Geogr 21:175–197

    Article  Google Scholar 

  • Snir A, Nadel D, Groman-Yaroslavski I et al (2015) The origin of cultivation and proto-weeds, long before Neolithic farming. PLoS ONE 10(7):e0131422. https://doi.org/10.1371/journal.pone.0131422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solbrig OT, Solbrig DJ (1994) So shall you reap: farming and crops in human affairs. Island Press, Washington, DC

    Google Scholar 

  • Sperow M (2016) Estimating carbon sequestration potential on U.S. agricultural topsoils. Soil Till Res 155:390–400

    Article  Google Scholar 

  • Springer NP, Duchin F (2014) Feeding nine billion people sustainably: conserving land and water through shifting diets and changes in technologies. Environ Sci Technol 48:4444–4451

    Article  PubMed  CAS  Google Scholar 

  • Springmann M, Godfray HCJ, Rayner M, Scarborough P (2016) Analysis and valuation of the health and climate change cobenefits of dietary change. Proc Natl Acad Sci USA 113:4146–4151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevenson JR, Villoria N, Byerlee D, Kelley T, Maredia M (2013) Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc Natl Acad Sci USA 110:8363–8368

    Article  PubMed  PubMed Central  Google Scholar 

  • Stocker BD, Yu Z, Massa C, Joos F (2017) Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proc Natl Acad Sci USA 114:1492–1497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Struik PC, Kuyper TW (2017) Sustainable intensification in agriculture: the richer shade of green. A review. Agron Sustain Dev 37:39. https://doi.org/10.1007/s13593-017-0445-7

    Article  Google Scholar 

  • Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26

    Article  CAS  Google Scholar 

  • Tate KR (2015) Soil methane oxidation and land-use change—from process to mitigation. Soil Biol Biochem 80:260–272

    Article  CAS  Google Scholar 

  • Taylor SH, Long SP (2017) Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Phil Trans R Soc B 372:20160543. https://doi.org/10.1098/rstb.2016.0543

    Article  PubMed  PubMed Central  Google Scholar 

  • Techen AK, Helming K (2017) Pressures on soil functions from soil management in Germany. A foresight review. Agron Sustain Dev 37:64. https://doi.org/10.1007/s13593-017-0473-3

    Article  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264

    Article  PubMed  PubMed Central  Google Scholar 

  • Tollenaar M, Fridgen J, Tyagi P, Stackhouse PW, Kumudini S (2017) The contribution of solar brightening to the US maize yield trend. Nat Clim Change 7:275–278. https://doi.org/10.1038/NCLIMATE3234

    Article  Google Scholar 

  • Tomasek BJ, Williams MM, Davis AS (2017) Changes in field workability and drought risk from projected climate change drive spatially variable risks in Illinois cropping systems. PLoS ONE 12:e0172301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tubiello FN, Salvatore M, Ferrara AF et al (2015) The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob Change Biol 21:2655–2660

    Article  Google Scholar 

  • United Nations Convention to Combat Desertification (UNCCD) (2017) The Global Land Outlook, 1st edn. Bonn, Germany

    Google Scholar 

  • United Nations (2014) 2014 Revision of World urbanization prospects. New York

    Google Scholar 

  • Van Meijl H, Havlik P, Lotze-Campen P, et al. (2017) Challenges of global agriculture in a climate change context by 2050 (AgCLIM50). JRC Science for Policy Report, EUR 28649 EN, https://doi.org/10.2760/772445

  • Van Oost K, Quine TA, Govers G et al (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629

    Article  PubMed  CAS  Google Scholar 

  • Van Passel S, Massetti E, Mendelsohn R (2016) A ricardian analysis of the impact of climate change on European agriculture. DOI, Environ Resource Econ. https://doi.org/10.1007/s10640-016-0001-y

    Book  Google Scholar 

  • van Vliet J, Eitelberg DA, Verburg PH (2017) A global analysis of land take in cropland areas and production displacement from urbanization. Glob Environ Change 43:107–115

    Article  Google Scholar 

  • Wagner-Riddle C, Congreves KA, Abalos D et al (2017) Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nat Geosci 10:279–286

    Article  CAS  Google Scholar 

  • Walter A, Finger R, Huber R, Buchmann N (2017) Smart farming is key to developing sustainable agriculture. Proc Natl Acad Sci USA 114:6148–6150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang E, Martre P, Zhao Z et al (2017) The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat Plants 3:17102. https://doi.org/10.1038/nplants.2017.102

    Article  PubMed  Google Scholar 

  • Wang X, Wang J, Xu M et al (2015) Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon. Sci Rep 5:11439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watling J, Iriarte J, Mayle FE et al (2017) Impact of pre-Columbian “geoglyph” builders on Amazonian forests. Proc Natl Acad Sci USA 114:1868–1873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White RR, Hall MB (2017) Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc Natl Acad Sci USA E10301–E10308. doi/https://doi.org/10.1073/pnas.1707322114

  • Wiebe K, Lotze-Campen H, Sands R et al (2015) Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ Res Lett 10:085010

    Article  CAS  Google Scholar 

  • Willer H, Lernoud J (eds) (2017) The world of organic agriculture. statistics and emerging trends 2017. Research Institute of Organic Agriculture (FiBL), Frick, and IFOAM—Organics International Bonn

    Google Scholar 

  • Williamson P (2016) Scrutinize CO2 removal methods. Nature 530:153–155

    Article  PubMed  CAS  Google Scholar 

  • Wiltshire A, Davies-Barnard T (2015) Planetary limits to BECCS negative emissions. Avoid2

    Google Scholar 

  • Winiwarter W, Höglund-Isaksson L, Klimont Z, Schöpp W, Amann M (2018) Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environ Res Lett 13:014011

    Article  Google Scholar 

  • Winter JM, Lopez JR, Ruane AC et al (2017) Representing water scarcity in future agricultural assessments. Anthropocene 18:15–26

    Article  Google Scholar 

  • WMO World Meteorological Organization (2017a) WMO statement on the state of the global climate in 2016. WMO-No. 1189. Geneva, Switzerland

    Google Scholar 

  • WMO World Meteorological Organization (2017b) Greenhouse gas concentrations surge to new record. https://public.wmo.int/en/media/press-release/greenhouse-gas-concentrations-surge-new-record

  • Wolf J, Asrar GR, West TO (2017) Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock. Carbon Balance Manage 12:16. https://doi.org/10.1186/s13021-017-0084-y

    Article  CAS  Google Scholar 

  • Wolf J, West TO, Le Page Y et al (2015) Biogenic carbon fluxes from global agricultural pro-duction and consumption. Global Biogeochem Cycles 29:1617–1639. https://doi.org/10.1002/2015GB005119

    Article  CAS  Google Scholar 

  • Wollenberg E, Richards M, Smith P et al (2016) Reducing emissions from agriculture to meet the 2 °C target. Global Change Biol 22:3859–3864

    Article  Google Scholar 

  • World Bank (2008) World development report 2008. Agriculture for Development (World Bank), Washington, DC

    Google Scholar 

  • Xue L, Liu G, Parfitt J et al (2017) Missing food, missing data? A critical review of global food losses and food waste data. Environ Sci Technol 51:6618–6633. https://doi.org/10.1021/acs.est.7b00401

    Article  PubMed  CAS  Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C et al (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–495

    Article  PubMed  CAS  Google Scholar 

  • Zalasiewicz J, Williams M, Haywood A, Ellis M (2011) The Anthropocene: a new epoch of geological time? Phil Trans R Soc A 369:835–841

    Article  PubMed  Google Scholar 

  • Zhang B, Tian H, Ren W et al (2016) Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls. Global Biogeochem Cyc 30:1246–1263

    Article  CAS  Google Scholar 

  • Zhao C, Liu B, Piao S et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114:9326–9331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo X, Lu H, Jiang L et al (2017) Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc Natl Acad Sci USA 114:6486–6491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmerer KS, de Haan S (2017) Agrobiodiversity and a sustainable food future. Nat Plants 3:17047. https://doi.org/10.1038/nplants.2017.47

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, K., Lal, R. (2018). Agricultural Land Use and the Global Carbon Cycle. In: Carbon Sequestration in Agricultural Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-92318-5_1

Download citation

Publish with us

Policies and ethics