Skip to main content

Function Representation for Robotic 3D Printed Concrete

  • Conference paper
  • First Online:
Robotic Fabrication in Architecture, Art and Design 2018 (ROBARCH 2018)

Included in the following conference series:

Abstract

The use of Function Representation (FRep) to synthesise and specify geometries for 3D printing is finding renewed interest. The usefulness and extension of this representation in the synthesis and analysis of geometries for the process of large-scale, layered concrete 3D printing has been previously articulated by the authors. This paper fully extends the implicit representation used previously in shape-design to fabrication-related processing of compressive skeletal structures for realisation by robotic 3D printing of concrete. In particular, we use an initial value formulation of a propagating front to process the nodes and bars of a given funicular spatial structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhooshan, S., Van Mele, T., Block, P.: Equilibrium-aware shape design for concrete printing. In: De Rycke, K., Gengnagel, C., Baverel, O., Burry, J., Mueller, C., Nguyen, M.M., Rahm, P., Thomsen, M.R. (eds.) Humanizing Digital Reality, Design Modelling Symposium 2017, pp. 493–508. Springer, Singapore (2017)

    Google Scholar 

  • Bloomenthal, J., Bajaj, C.: Introduction to Implicit Surfaces. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  • Bloomenthal, J., Shoemake, K.: Convolution surfaces. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH 1991), pp. 251–256. Las Vegas (1991)

    Google Scholar 

  • Cacace, S., Cristiani, E., Rocchi, L.: A level set based method for fixing overhangs in 3D printing. Appl. Math. Model. 44, 446–455 (2017)

    Article  MathSciNet  Google Scholar 

  • Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53, 211–218 (1991)

    Article  Google Scholar 

  • Desbrun, M., Gascuel, M.-P.: Animating soft substances with implicit surfaces. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH 1995), pp. 287–290. Los Angeles, CA (1995)

    Google Scholar 

  • Frick, U., Van Mele, T., Block, P.: Decomposing three-dimensional shapes into self-supporting, discrete-element assemblies. In: Thomsen, M., Tamke, M., Gengnagel, C., Faircloth, B., Scheurer, F. (eds.) Modelling Behaviour, Design Modelling Symposium 2015, pp. 187–201. Springer, Cham (2015)

    Google Scholar 

  • Hubert, E., Cani, M.-P.: Convolution surfaces based on polygonal curve skeletons. J. Symb. Comput. 47, 680–699 (2012)

    Article  MathSciNet  Google Scholar 

  • Ji, Z., Liu, L., Wang, Y.: B‐Mesh: a modeling system for base meshes of 3D articulated shapes. In: Computer Graphics Forum, pp. 2169–2177. Wiley Online Library (2010)

    Google Scholar 

  • Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  • Keeter, M.: Hierarchical volumetric object representations for digital fabrication workflows. In: Proceedings of the 40th Annual Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH 2013), Poster, Anaheim, CA (2013)

    Google Scholar 

  • Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., Chen, B.: Build-to-last: strength to weight 3D printed objects. ACM Trans. Graph. 33, 97 (2014)

    MATH  Google Scholar 

  • Monreal, A.: T-Norms, T-Conorms, aggregation operators and Gaudí’s columns.In: Seising, R., González, V.S. (eds.) Soft Computing in Humanities and Social Sciences, pp. 497–515. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  • Pasko, A., Adzhiev, V.: Function-based shape modeling: mathematical framework and specialized language. In: Winkler, F. (ed.) ADG 2002: 4th International Workshop on Automated Deduction in Geometry, Hagenberg Castle, Austria, pp. 132–160. Springer, Heidelberg (2002)

    Google Scholar 

  • Perugini, P., Andreani, S.: Pier Luigi Nervi’s columns: flow of lines and forces. J. Int. Assoc. Shell Spat. Struct. 54, 137–148 (2013)

    Google Scholar 

  • Popescu, M., Rippmann, M., Van Mele, T., Philippe, B.: Complex concrete casting: knitting stay-in-place formwork. In: Proceedings of the IASS 2016 Annual International Symposium: Spatial Structures in the 21st Century, Tokyo, p. 1278 (2016)

    Google Scholar 

  • Rian, I.M., Sassone, M.: Tree-inspired dendriforms and fractal-like branching structures in architecture: a brief historical overview. Front. Archit. Res. 3, 298–323 (2014)

    Article  Google Scholar 

  • Rossignac, J.: Blending and offsetting solid models Ph.D. thesis, University of Rochester (1985)

    Google Scholar 

  • Sethian, J.: Fast marching methods and level set methods for propagating interfaces. In: Comput. Fluid Dyn. Annu. Lect. Ser. 29th, Rhode-Saint-Genese, Belgium (1998)

    Google Scholar 

  • Sherstyuk, A.: Interactive shape design with convolution surfaces. In: Proceedings of the International Conference on Shape Modeling and Applications, Shape Modeling International 1999, pp. 56–65. Aizu-Wakamatsu, Japan (1999a)

    Google Scholar 

  • Sherstyuk, A.: Kernel functions in convolution surfaces: a comparative analysis. Vis. Comput. 15, 171–182 (1999)

    Article  Google Scholar 

  • West, M.: Fabric-formed concrete structures. In: Proceedings of First International Conference on Concrete and Development, pp. 133–142. Tehran, Iran (2001)

    Google Scholar 

  • West, M.: The Fabric Formwork Book: Methods for Building New Architectural and Structural Forms in Concrete. Routledge, Abington, OX (2016)

    Google Scholar 

  • Wyvill, B., Wyvill, G.: Field functions for implicit surfaces. Vis. Comput. 5, 75–82 (1989)

    Article  Google Scholar 

  • Wyvill, G., McPheeters, C., Wyvill, B.: Soft objects. In: Kunii, T. (ed.) Advanced Computer Graphics: Proceedings of Computer Graphics Tokyo 1886, pp. 113–128. Springer, Tokyo (1986)

    Google Scholar 

  • XtreeE (2017). Post in Aix-en-Provence. http://www.xtreee.eu/post-in-aix-en-provence/. Accessed 3 Sept 2018

  • Zastavni, D.: The structural design of Maillart’s Chiasso Shed (1924): a graphic procedure. Struct. Eng. Int. 18, 247–252 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shajay Bhooshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhooshan, S., Ladinig, J., Van Mele, T., Block, P. (2019). Function Representation for Robotic 3D Printed Concrete. In: Willmann, J., Block, P., Hutter, M., Byrne, K., Schork, T. (eds) Robotic Fabrication in Architecture, Art and Design 2018. ROBARCH 2018. Springer, Cham. https://doi.org/10.1007/978-3-319-92294-2_8

Download citation

Publish with us

Policies and ethics