Evaluation of Multi-metric Registration for Online Adaptive Proton Therapy of Prostate Cancer

  • Mohamed S. ElmahdyEmail author
  • Thyrza Jagt
  • Sahar Yousefi
  • Hessam Sokooti
  • Roel Zinkstok
  • Mischa Hoogeman
  • Marius Staring
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10883)


Delineation of the target volume and Organs-At-Risk (OARs) is a crucial step for proton therapy dose planning of prostate cancer. Adaptive proton therapy mandates automatic delineation, as manual delineation is too time consuming while it should be fast and robust. In this study, we propose an accurate and robust automatic propagation of the delineations from the planning CT to the daily CT by means of Deformable Image Registration (DIR). The proposed algorithm is a multi-metric DIR method that jointly optimizes the registration of the bladder contours and CT images. A 3D Dilated Convolutional Neural Network (DCNN) was trained for automatic bladder segmentation of the daily CT. The network was trained and tested on prostate data of 18 patients, each having 7 to 10 daily CT scans. The network achieved a Dice Similarity Coefficient (DSC) of \(92.7\% \pm 1.6\%\) for automatic bladder segmentation. For the automatic contour propagation of the prostate, lymph nodes, and seminal vesicles, the system achieved a DSC of \(0.87\pm 0.03\), \(0.89\pm 0.02\), and \(0.67\pm 0.11\) and Mean Surface Distance of \(1.4\pm 0.30\) mm, \(1.4\pm 0.29\) mm, and \(1.5 \pm 0.37\) mm, respectively. The proposed algorithm is therefore very promising for clinical implementation in the context of online adaptive proton therapy of prostate cancer.


Deformable image registration Convolutional neural networks (CNN) Prostate cancer Proton therapy 



This study was financially supported by ZonMw, the Netherlands Organization for Health Research and Development, grant number 104003012. The CT-data with contours were collected at Haukeland University Hospital, Bergen, Norway and were provided to us by responsible oncologist Svein Inge Helle and physicist Liv Bolstad Hysing; they are gratefully acknowledged.


  1. 1.
  2. 2.
    Zhang, M., Westerly, D., Mackie, T.: Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy. Phys. Med. Biol. 56(15), 4947–4965 (2011)CrossRefGoogle Scholar
  3. 3.
    Lomax, A.: Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties. Phys. Med. Biol. 53(4), 1027–1042 (2008)CrossRefGoogle Scholar
  4. 4.
    Hansen, E., Bucci, M., Quivey, J., Weinberg, V., Xia, P.: Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 64(2), 355–362 (2006)CrossRefGoogle Scholar
  5. 5.
    Yang, D., Brame, S., El Naqa, I., Aditya, A., Wu, Y., Murty Goddu, S., Mutic, S., Deasy, J., Low, D.: Technical note: DIRART- a software suite for deformable image registration and adaptive radiotherapy research. Med. Phys. 38(1), 67–77 (2010)CrossRefGoogle Scholar
  6. 6.
    Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  7. 7.
    Qiao, Y.: Fast optimization methods for image registration in adaptive radiation therapy. Ph.D. thesis, Leiden University Medical Center (2017)Google Scholar
  8. 8.
    Thor, M., Petersen, J., Bentzen, L., HØyer, M., Muren, L.: Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer. Acta Oncologica 50(6), 918–925 (2011)CrossRefGoogle Scholar
  9. 9.
    Woerner, A., Choi, M., Harkenrider, M., Roeske, J., Surucu, M.: Evaluation of deformable image registration-based contour propagation from planning CT to cone-beam CT. Technol. Cancer Res. Treat. 16(6), 801–810 (2017)CrossRefGoogle Scholar
  10. 10.
    Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 95–102. Springer, Cham (2017). Scholar
  11. 11.
    Staring, M., Bakker, M., Stolk, J., Shamonin, D., Reiber, J., Stoel, B.: Towards local progression estimation of pulmonary emphysema using CT. Med. Phys. 41(2), 021905 (2014)CrossRefGoogle Scholar
  12. 12.
    Huizinga, W., Klein, S., Poot, D.H.J.: Fast multidimensional B-spline interpolation using template metaprogramming. In: Ourselin, S., Modat, M. (eds.) WBIR 2014. LNCS, vol. 8545, pp. 11–20. Springer, Cham (2014). Scholar
  13. 13.
    Qiao, Y., van Lew, B., Lelieveldt, B.P.F., Staring, M.: Fast automatic step size estimation for gradient descent optimization of image registration. IEEE Trans. Med. Imaging 35(2), 391–403 (2016)CrossRefGoogle Scholar
  14. 14.
    Cha, K.H., Hadjiiski, L., Samala, R.K., Chan, H.-P., Caoili, E.M., Cohan, R.H.: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med. Phys. 43(4), 1882–1896 (2016)CrossRefGoogle Scholar
  15. 15.
    Zhou, X., Ito, T., Takayama, R., Wang, S., Hara, T., Fujita, H.: Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 111–120. Springer, Cham (2016). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed S. Elmahdy
    • 1
    Email author
  • Thyrza Jagt
    • 3
  • Sahar Yousefi
    • 1
  • Hessam Sokooti
    • 1
  • Roel Zinkstok
    • 1
  • Mischa Hoogeman
    • 3
  • Marius Staring
    • 1
    • 2
  1. 1.Leiden University Medical CenterLeidenThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands
  3. 3.Erasmus MC Cancer InstituteRotterdamThe Netherlands

Personalised recommendations