Advertisement

Adaptive Graph Diffusion Regularisation for Discontinuity Preserving Image Registration

  • Robin SandkühlerEmail author
  • Christoph Jud
  • Simon Pezold
  • Philippe C. Cattin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10883)

Abstract

Registration of thoracic images is central when studying for example physiological changes of the lung. Due to sliding organ motion and intensity changes based on respiration the registration of thoracic images is challenging. We present a novel regularisation method based on adaptive anisotropic graph diffusion. Without the need of a mask it preserves discontinuities of the transformation at sliding organ boundaries and enforces smoothness in areas with similar motion. The graph diffusion regularisation provides a direct way to achieve anisotropic diffusion at sliding organ boundaries by reducing the weight of corresponding edges in the graph which cross the sliding interfaces. Since the graph diffusion is defined by the edge weights of the graph, we develop an adaptive edge weight function to detect sliding boundaries. We implement the adaptive graph diffusion regularisation method in the Demons registration framework. The presented method is tested on synthetic 2D images and on the public 4D-CT DIR-Lab data set, where we are able to correctly detect the sliding organ boundaries.

Notes

Acknowledgement

The authors would like to thank the Swiss National Science Foundation for funding this project (SNF 320030_149576).

References

  1. 1.
    Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(1), 26–33 (1986)CrossRefGoogle Scholar
  2. 2.
    Bagnato, L., Frossard, P., Vandergheynst, P.: Optical flow and depth from motion for omnidirectional images using a TV-L1 variational framework on graphs. In: 2009 16th IEEE International Conference on Image Processing, pp. 1469–1472 (2009)Google Scholar
  3. 3.
    Cachier, P., Pennec, X.: 3D non-rigid registration by gradient descent on a Gaussian-windowed similarity measure using convolutions. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 182–189 (2000)Google Scholar
  4. 4.
    Demirovic, D., Serifovic, A., Cattin, P.C.: An anisotropic diffusion regularized demons for improved registration of sliding organs. In: 18th International Electrotechnical and Computer Science Conference (ERK), p. BM.1.4 (2009)Google Scholar
  5. 5.
    Hua, R., Pozo, J.M., Taylor, Z.A., Frangi, A.F.: Multiresolution eXtended Free-Form Deformations (XFFD) for non-rigid registration with discontinuous transforms. Med. Image Anal. 36, 113–122 (2017)CrossRefGoogle Scholar
  6. 6.
    Jud, C., Möri, N., Bitterli, B., Cattin, P.C.: Bilateral regularization in reproducing kernel hilbert spaces for discontinuity preserving image registration. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 10–17. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47157-0_2CrossRefGoogle Scholar
  7. 7.
    Kiriyanthan, S., Fundana, K., Majeed, T., Cattin, P.C.: A primal-dual approach for discontinuity preserving image registration through motion segmentation. Int. J. Comput. Math. Methods Med. (2016)Google Scholar
  8. 8.
    Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input spaces. In: Proceedings of the Nineteenth International Conference on Machine Learning, pp. 315–322. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  9. 9.
    Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. B 45, 255–282 (1950)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Moler, C., Loan, C.V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 801–836 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(5), 565–593 (1986)CrossRefGoogle Scholar
  12. 12.
    Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)CrossRefGoogle Scholar
  13. 13.
    Papież, B.W., Szmul, A., Grau, V., Brady, J.M., Schnabel, J.A.: Non-local Graph-based regularization for deformable image registration. In: Müller, H., et al. (eds.) MCV/BAMBI -2016. LNCS, vol. 10081, pp. 199–207. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61188-4_18CrossRefGoogle Scholar
  14. 14.
    Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Santos-Ribeiro, A., Nutt, D.J., McGonigle, J.: Inertial demons: a momentum-based diffeomorphic registration framework. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 37–45. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46726-9_5CrossRefGoogle Scholar
  16. 16.
    Schmidt-Richberg, A., Werner, R., Handels, H., Ehrhardt, J.: Estimation of slipping organ motion by registration with direction-dependent regularization. Med. Image Anal. 16(1), 150–159 (2012)CrossRefGoogle Scholar
  17. 17.
    Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45167-9_12CrossRefzbMATHGoogle Scholar
  18. 18.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2, 243–260 (1998)CrossRefGoogle Scholar
  19. 19.
    Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C., Goksel, O.: Isotropic total variation regularization of displacements in parametric image registration. IEEE Trans. Med. Imaging 36(2), 385–395 (2017)CrossRefGoogle Scholar
  20. 20.
    Zhang, F., Hancock, E.R.: Graph spectral image smoothing using the heat kernel. Pattern Recognit. 41(11), 3328–3342 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Robin Sandkühler
    • 1
    Email author
  • Christoph Jud
    • 1
  • Simon Pezold
    • 1
  • Philippe C. Cattin
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of BaselAllschwilSwitzerland

Personalised recommendations