Skip to main content

Adaptive Graph Diffusion Regularisation for Discontinuity Preserving Image Registration

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10883))

Included in the following conference series:

Abstract

Registration of thoracic images is central when studying for example physiological changes of the lung. Due to sliding organ motion and intensity changes based on respiration the registration of thoracic images is challenging. We present a novel regularisation method based on adaptive anisotropic graph diffusion. Without the need of a mask it preserves discontinuities of the transformation at sliding organ boundaries and enforces smoothness in areas with similar motion. The graph diffusion regularisation provides a direct way to achieve anisotropic diffusion at sliding organ boundaries by reducing the weight of corresponding edges in the graph which cross the sliding interfaces. Since the graph diffusion is defined by the edge weights of the graph, we develop an adaptive edge weight function to detect sliding boundaries. We implement the adaptive graph diffusion regularisation method in the Demons registration framework. The presented method is tested on synthetic 2D images and on the public 4D-CT DIR-Lab data set, where we are able to correctly detect the sliding organ boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.dir-lab.com.

References

  1. Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(1), 26–33 (1986)

    Article  Google Scholar 

  2. Bagnato, L., Frossard, P., Vandergheynst, P.: Optical flow and depth from motion for omnidirectional images using a TV-L1 variational framework on graphs. In: 2009 16th IEEE International Conference on Image Processing, pp. 1469–1472 (2009)

    Google Scholar 

  3. Cachier, P., Pennec, X.: 3D non-rigid registration by gradient descent on a Gaussian-windowed similarity measure using convolutions. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 182–189 (2000)

    Google Scholar 

  4. Demirovic, D., Serifovic, A., Cattin, P.C.: An anisotropic diffusion regularized demons for improved registration of sliding organs. In: 18th International Electrotechnical and Computer Science Conference (ERK), p. BM.1.4 (2009)

    Google Scholar 

  5. Hua, R., Pozo, J.M., Taylor, Z.A., Frangi, A.F.: Multiresolution eXtended Free-Form Deformations (XFFD) for non-rigid registration with discontinuous transforms. Med. Image Anal. 36, 113–122 (2017)

    Article  Google Scholar 

  6. Jud, C., Möri, N., Bitterli, B., Cattin, P.C.: Bilateral regularization in reproducing kernel hilbert spaces for discontinuity preserving image registration. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 10–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47157-0_2

    Chapter  Google Scholar 

  7. Kiriyanthan, S., Fundana, K., Majeed, T., Cattin, P.C.: A primal-dual approach for discontinuity preserving image registration through motion segmentation. Int. J. Comput. Math. Methods Med. (2016)

    Google Scholar 

  8. Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input spaces. In: Proceedings of the Nineteenth International Conference on Machine Learning, pp. 315–322. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  9. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. B 45, 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  10. Moler, C., Loan, C.V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 801–836 (2003)

    Article  MathSciNet  Google Scholar 

  11. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(5), 565–593 (1986)

    Article  Google Scholar 

  12. Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)

    Article  Google Scholar 

  13. Papież, B.W., Szmul, A., Grau, V., Brady, J.M., Schnabel, J.A.: Non-local Graph-based regularization for deformable image registration. In: Müller, H., et al. (eds.) MCV/BAMBI -2016. LNCS, vol. 10081, pp. 199–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61188-4_18

    Chapter  Google Scholar 

  14. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)

    Article  MathSciNet  Google Scholar 

  15. Santos-Ribeiro, A., Nutt, D.J., McGonigle, J.: Inertial demons: a momentum-based diffeomorphic registration framework. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 37–45. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_5

    Chapter  Google Scholar 

  16. Schmidt-Richberg, A., Werner, R., Handels, H., Ehrhardt, J.: Estimation of slipping organ motion by registration with direction-dependent regularization. Med. Image Anal. 16(1), 150–159 (2012)

    Article  Google Scholar 

  17. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_12

    Chapter  MATH  Google Scholar 

  18. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2, 243–260 (1998)

    Article  Google Scholar 

  19. Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C., Goksel, O.: Isotropic total variation regularization of displacements in parametric image registration. IEEE Trans. Med. Imaging 36(2), 385–395 (2017)

    Article  Google Scholar 

  20. Zhang, F., Hancock, E.R.: Graph spectral image smoothing using the heat kernel. Pattern Recognit. 41(11), 3328–3342 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Swiss National Science Foundation for funding this project (SNF 320030_149576).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Sandkühler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sandkühler, R., Jud, C., Pezold, S., Cattin, P.C. (2018). Adaptive Graph Diffusion Regularisation for Discontinuity Preserving Image Registration. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science(), vol 10883. Springer, Cham. https://doi.org/10.1007/978-3-319-92258-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92258-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92257-7

  • Online ISBN: 978-3-319-92258-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics