Statistical Motion Mask and Sliding Registration

  • Björn EibenEmail author
  • Elena H. Tran
  • Martin J. Menten
  • Uwe Oelfke
  • David J. Hawkes
  • Jamie R. McClelland
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10883)


Accurate registration of images depicting respiratory motion, e.g. 4DCT or 4DMR, can be challenging due to sliding motion that occurs between the chest wall and organs within the pleural sac (lungs, mediastinum, liver). In this paper we propose a methodology that (1) segments one of the images to be registered (the source or floating/moving image) into two distinct regions by fitting a statistical motion mask, and (2) registers the image with a modified B-spline registration algorithm that can account for sliding motion between the regions. This registration requires the segmentation of the regions in the source image domain as a signed distance map. Two underlying transformations allow the regions to deform independently, while a constraint term based on the transformed distance maps penalises gaps and overlaps between the regions. Although implemented in a B-spline algorithm, the required modifications are not specific to the transformation type and thus can be applied to parametric and non-parametric frameworks alike. The registration accuracy is evaluated using the landmark registration error on the basis of the publicly available DIR-Lab dataset. The overall average landmark error after registration is 1.21 mm and the average gap and overlap volumes are 26.4 cm\(^3\) and 34.5 cm\(^3\) respectively. The fitted statistical motion masks are compared to previously proposed motion masks and the corresponding mean Dice coefficient is 0.96.


Sliding motion B-Spline registration Statistical shape model Motion mask 



This research is funded by the Stand Up to Cancer campaign for Cancer Research UK (C33589/A19727, C33589/A19908, C33589/CRC521) and Network Accelerator Award Grant (A219932). We acknowledge financial and technical support from Elekta AB under a research agreement and NHS funding to the NIHR Biomedical Research Centre at RMH/ICR.


  1. 1.
    Berendsen, F.F., Kotte, A.N.T.J., Viergever, M.A., Pluim, J.P.W.: Registration of organs with sliding interfaces and changing topologies. In: Proceedings of SPIE Medical Imaging, vol. 9034, pp. 1–7 (2014)Google Scholar
  2. 2.
    Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-dimensional deformable image registration using trajectory modeling. Phys. Med. Biol. 55(1), 305–327 (2010)CrossRefGoogle Scholar
  3. 3.
    Castillo, R., Castillo, E., Guerra, R., Johnson, V.E., McPhail, T., Garg, A.K., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54(7), 1849–1870 (2009)CrossRefGoogle Scholar
  4. 4.
    Cootes, T.F., Taylor, C.J., et al.: Statistical models of appearance for computer vision. Technical report, University of Manchester (2004)Google Scholar
  5. 5.
    Delmon, V., Rit, S., Pinho, R., Sarrut, D.: Registration of sliding objects using direction dependent B-splines decomposition. Phys. Med. Biol. 58(5), 1303–1314 (2013)CrossRefGoogle Scholar
  6. 6.
    Eiben, B., Vavourakis, V., Hipwell, J.H., Kabus, S., Lorenz, C., Buelow, T., Williams, N.R., Keshtgar, M., Hawkes, D.J.: Surface driven biomechanical breast image registration. In: Proceedings of SPIE Medical Imaging, vol. 9786, pp. 1–10 (2016)Google Scholar
  7. 7.
    Hua, R., Pozo, J.M., Taylor, Z.A., Frangi, A.F.: Multiresolution eXtended Free-Form Deformations (XFFD) for non-rigid registration with discontinuous transforms. Med. Image Anal. 36, 113–122 (2017)CrossRefGoogle Scholar
  8. 8.
    McClelland, J.R., Modat, M., Arridge, S., Grimes, H., D’Souza, D., Thomas, D., Connell, D.O., Low, D.A., Kaza, E., Collins, D.J., Leach, M.O., Hawkes, D.J.: A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images. Phys. Med. Biol. 62(11), 4273–4292 (2017)CrossRefGoogle Scholar
  9. 9.
    Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)CrossRefGoogle Scholar
  10. 10.
    Papiez, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8, SI), 1299–1311 (2014)CrossRefGoogle Scholar
  11. 11.
    The Deformable Image Registration Laboratory: DIR Spatial Accuracy Results (2018). Accessed 20 Mar 2018
  12. 12.
    Vandemeulebroucke, J., Bernard, O., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT. Med. Phys. 39, 1006–1015 (2012)CrossRefGoogle Scholar
  13. 13.
    Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C., Goksel, O.: Isotropic total variation regularization of displacements in parametric image registration. IEEE Trans. Med. Imaging 36(2), 385–395 (2017)CrossRefGoogle Scholar
  14. 14.
    Wu, Z., Rietzel, E., Boldea, V., Sarrut, D., Sharp, G.C.: Evaluation of deformable registration of patient lung 4DCTs with subanatomical region segmentations. Med. Phys. 35(2), 775–781 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Björn Eiben
    • 1
    Email author
  • Elena H. Tran
    • 1
  • Martin J. Menten
    • 2
  • Uwe Oelfke
    • 2
  • David J. Hawkes
    • 1
  • Jamie R. McClelland
    • 1
  1. 1.Centre for Medical Image ComputingUniversity College LondonLondonUK
  2. 2.Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUK

Personalised recommendations