Skip to main content

Structural Metrics

  • Chapter
  • First Online:
Multiplex Networks

Part of the book series: SpringerBriefs in Complexity ((BRIEFSCOMPLEXITY))

  • 872 Accesses

Abstract

A structural metric of a network is a measure of some property directly dependent on the system of relations between the components of the network, i.e., by representing the network with a graph, a structural metric is a measure of a property that depends on the edge set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we use the term “cycle” to refer to a walk that starts and ends at the same physical node u. It is permissible (and relevant) to return to the same node via a different layer from the one that was used originally to leave the node.

  2. 2.

    The definition we adopt for the global clustering coefficient is an example of a global structural metric that is not defined as the mean value over all the nodes of its local version. Actually, it is defined as the ratio between the mean number of closed triples and the mean number of open triples.

  3. 3.

    We use the configuration model instead of an ER network as a null model because the local clustering coefficient values are typically correlated with nodes degrees in single layer networks [55], and an ER-network null model would not preserve degree sequence.

  4. 4.

    By induction, \(f(\mathcal {Q}_R(\mathcal {A\widehat {C}}))=\mathcal {Q}_L(f(\widehat {C}\mathcal {A}))\), that is, \(\tilde {\mathbf {K}}=f(\mathbf {W})\)

References

  1. S.E. Ahnert, D. Garlaschelli, T.M.A. Fink, G. Caldarelli, Ensemble approach to the analysis of weighted networks. Phys. Rev. E 76(1), 016101 (2007)

    Google Scholar 

  2. L. Barrett, S.P. Henzi, D. Lusseau, Taking sociality seriously: the structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. R. Soc., B: Biol. Sci. 367(1599), 2108–2118 (2012)

    Article  Google Scholar 

  3. F. Battiston, V. Nicosia, V. Latora, Metrics for the analysis of multiplex networks. Phys. Rev. E 89, 032804 (2013)

    Article  ADS  Google Scholar 

  4. R.L. Breiger, P.E. Pattison, Cumulated social roles: the duality of persons and their algebras. Soc. Networks 8(3), 215–256 (1986)

    Article  Google Scholar 

  5. P. Bródka, K. Musial, P. Kazienko, A method for group extraction in complex social networks, in Knowledge Management, Information Systems, E-Learning, and Sustainability Research (Springer, Berlin, 2010), pp. 238–247

    Google Scholar 

  6. P. Bródka, P. Kazienko, K. Musiał, K. Skibicki, Analysis of neighbourhoods in multi-layered dynamic social networks. Int. J. Comput. Intell. Syst. 5(3), 582–596 (2012)

    Article  Google Scholar 

  7. E. Cozzo, M. Kivela, M. De Domenico, A. Solé-Ribalta, A. Arenas, S. Gómez, M.A. Porter, Y. Moreno, Structure of triadic relations in multiplex networks. New J. Phys. 17(7), 073029 (2015)

    Google Scholar 

  8. R. Criado, J. Flores, A. García del Amo, J. Gómez-Gardeñes, M. Romance, A mathematical model for networks with structures in the mesoscale. Int. J. Comput. Math. 89(3), 291–309 (2012)

    Article  MathSciNet  Google Scholar 

  9. E. Estrada, J.A. Rodriguez-Velazquez, Subgraph centrality in complex networks. Phys. Rev. E 71(5), 056103 (2005)

    Google Scholar 

  10. R. Gallotti, M. Barthelemy, Anatomy and efficiency of urban multimodal mobility. Sci. Rep. 4 (2014)

    Google Scholar 

  11. P. Grindrod, Range-dependent random graphs and their application to modeling large small-world proteome datasets. Phys. Rev. E 66(6), 066702 (2002)

    Google Scholar 

  12. B. Kapferer, Strategy and Transaction in an African Factory: African Workers and Indian Management in a Zambian Town (Manchester University Press, Manchester, 1972)

    Google Scholar 

  13. M. Karlberg, Testing transitivity in graphs. Soc. Networks 19(4), 325–343 (1997)

    Article  Google Scholar 

  14. M. Kivela, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, Multilayer networks. J. Complex Networks 2(3), 203–271 (2014)

    Article  Google Scholar 

  15. D. Krackhardt, Cognitive social structures. Soc. Networks 9(2), 109–134 (1987)

    Article  MathSciNet  Google Scholar 

  16. R.D. Luce, A.D. Perry, A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  17. M. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)

    Book  Google Scholar 

  18. openflights.org. http://openflights.org/data.htm

  19. T. Opsahl, P. Panzarasa, Clustering in weighted networks. Soc. Networks 31(2), 155–163 (2009)

    Article  Google Scholar 

  20. F.J. Roethlisberger, W.J. Dickson, Management and the Worker (Harvard University Press, Cambridge, 1939)

    Google Scholar 

  21. M.P. Rombach, M.A. Porter, J.H. Fowler, P.J. Mucha, Core-periphery structure in networks. SIAM J. Appl. Math. 74(1), 167–190 (2014)

    Article  MathSciNet  Google Scholar 

  22. J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, J. Kertesz, Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75(2), 027105 (2007)

    Google Scholar 

  23. M. Szell, R. Lambiotte, S. Thurner, Multirelational organization of large-scale social networks in an online world. Proc. Natl. Acad. Sci. 107(31), 13636–13641 (2010)

    Article  ADS  Google Scholar 

  24. S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, vol. 8 (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  25. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  ADS  Google Scholar 

  26. B. Zhang, S. Horvath, A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4(1), Article 17 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cozzo, E., de Arruda, G.F., Rodrigues, F.A., Moreno, Y. (2018). Structural Metrics. In: Multiplex Networks. SpringerBriefs in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-92255-3_3

Download citation

Publish with us

Policies and ethics