Skip to main content

Hydrothermal Carbonization (HTC) of Sewage Sludge: GHG Emissions of Various Hydrochar Applications

  • Chapter
  • First Online:
Progress in Life Cycle Assessment

Abstract

Sewage sludge contains valuable nutrients like phosphorus (P) as well as a whole series of harmful substances. Therefore, conditioning should be designed to remove those pollutants. In Germany sewage sludge is treated mainly at thermal facilities such as sewage sludge mono-incineration plants, cement plants or coal fired power plants. However, ecological impacts of new treatment methods like hydrothermal carbonization (HTC) remain unknown. In the study presented in this paper, the complete life cycles of the carbonization process of sewage sludge (5% dry matter) with associated auxiliary flows (e.g. electricity and naturals gas) and different applications of the produced char were modelled. In order to identify the environmentally most promising and sustainable application, four different scenarios of hydrochar utilization as fuel or fertilizer were analyzed. The resulting global warming potentials (GWP) after ReCiPe midpoint methodology were calculated. Results show that the best scenario in environmental terms has savings of 0.074 kg CO2 eq/kg. The highest emissions were observed for the agricultural use of hydrochar as a substitute for NPK-fertilizer with 0.025 kg CO2 eq/kg, which even outnumbers the emissions of the benchmark process chain of sewage sludge mono-incineration (0.013 kg CO2 eq/kg). Results underline the sustainability of hydrothermal carbonization of sewage sludge as compared to sewage sludge mono-incineration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benavente, V., Fullana, A., Berge, N.D.: Life cycle analysis of hydrothermal carbonization of olive mill waste: comparison with current management approaches. J. Clean. Prod. 142, 2637–2648 (2017)

    Article  Google Scholar 

  • Berge, N.D., Li, L., Flora, J.R.V., Ro, K.S.: Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes. Waste Manag. (New York, N.Y.) 43, 203–217 (2015)

    Article  Google Scholar 

  • Berge, N.D., Ro, K.S., Mao, J., Flora, J.R.V., Chappell, M.A., Bae, S.: Hydrothermal carbonization of municipal waste streams. Environ. Sci. Technol. 45(13), 5696–5703 (2011)

    Article  Google Scholar 

  • Bergius, F.: Chemical Reactions Under High Pressure—Nobel Lecture (1932)

    Google Scholar 

  • Brookman, H., Gievers, F., Loewen, A., Kirsten, Loewe: Entschärfung regionaler Nährstoffüberschüsse in Form von Gärresten und Güllen durch Anwendung der HTC, technical report. Ministry of Food, Agriculture and Consumer Protection, Lower Saxony (ML), Hannover (2016)

    Google Scholar 

  • Buttmann, M.: Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse. Chem. Ing. Tec. 83(11), 1890–1896 (2011)

    Article  Google Scholar 

  • Cordell, D., Drangert, J.-O., White, S.: The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19(2), 292–305 (2009)

    Article  Google Scholar 

  • Cordell, D., White, S.: Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3(12), 2027–2049 (2011)

    Article  Google Scholar 

  • DIN EN ISO 14044 (2006) 14044 Umweltmanagement – Ökobilanz – Anforderungen und Anleitungen. ISO (International Organization for Standardization) (2006)

    Google Scholar 

  • Egle, L., Rechberger, H., Krampe, J., Zessner, M.: Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 571, 522–542 (2016)

    Article  Google Scholar 

  • Funke, A., Ziegler, F.: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod. Biorefin. 4(2), 160–177 (2010)

    Article  Google Scholar 

  • Heilmann, S.M., Molde, J.S., Timler, J.G., Wood, B.M., Mikula, A.L., Vozhdayev, G.V., Colosky, E.C., Spokas, K.A., Valentas, K.J.: Phosphorus reclamation through hydrothermal carbonization of animal manures. Environ. Sci. Technol. 48(17), 10323–10329 (2014)

    Article  Google Scholar 

  • Hoekman, S.K., Broch, A., Robbins, C., Zielinska, B., Felix, L.: Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers. Biorefinery 3(2), 113–126 (2013)

    Article  Google Scholar 

  • Huijbregts, M.A.J., Steinmann, Z.J.N., Elshout, P.M.F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., van Zelm, R.: ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22(2), 138–147 (2017)

    Article  Google Scholar 

  • Klinglmair, M., Lemming, C., Jensen, L.S., Rechberger, H., Astrup, T.F., Scheutz, C.: Phosphorus in Denmark: national and regional anthropogenic flows. Resour. Conserv. Recycl. 105, 311–324 (2015)

    Article  Google Scholar 

  • Kruse, A., Funke, A., Titirici, M.-M.: Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 17(3), 515–521 (2013)

    Article  Google Scholar 

  • Leinweber, P., Bathmann, U., Buczko, U., Douhaire, C., Eichler-Löbermann, B., Frossard, E., Ekardt, F., Jarvie, H., Krämer, I., Kabbe, C., Lennartz, B., Mellander, P.-E., Nausch, G., Ohtake, H. and Tränckner, J.: Handling the phosphorus paradox in agriculture and natural ecosystems: scarcity, necessity, and burden of P. Ambio 47(Suppl 1), 3–19 (2018)

    Article  Google Scholar 

  • Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.-M., Fühner, C., Bens, O., Kern, J., Emmerich, K.-H.: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1), 71–106 (2011)

    Article  Google Scholar 

  • Liu, X.V., Hoekman, S.K., Farthing, W., Felix, L.: Life cycle analysis of co-formed coal fines and hydrochar produced in twin-screw extruder (TSE). Environ. Prog. Sustai. Energy 36(3), 668–676 (2017)

    Article  Google Scholar 

  • Owsianiak, M., Ryberg, M.W., Renz, M., Hitzl, M. and Hauschild, M.Z.: Environmental performance of hydrothermal carbonization of four wet biomass waste streams at industry-relevant scales. ACS Sustain. Chem. Eng. (2016)

    Google Scholar 

  • Sartorius, C., Horn, J. and Tettenborn, F.: Phosphorus recovery from wastewater—state-of-the-art and future potential. In: Proceedings of the Water Environment Federation, 2011 (2011)

    Google Scholar 

  • Schoumans, O.F., Bouraoui, F., Kabbe, C., Oenema, O., van Dijk, K.C.: Phosphorus management in Europe in a changing world. Ambio 44(Suppl 2), S180–92 (2015)

    Article  Google Scholar 

  • Stucki, M., Eymann, L., Gerner, G., Krebs, R., Hartmann, F. and Wanner, R.: Hydrothermal carbonization of sewage sludge on industrial scale: energy efficiency, environmental effects and combustion (2015)

    Google Scholar 

  • Tirler, W., Basso, A.: Resembling a “natural formation pattern” of chlorinated dibenzo-p-dioxins by varying the experimental conditions of hydrothermal carbonization. Chemosphere 93(8), 1464–1470 (2013)

    Article  Google Scholar 

  • Titirici, M.-M., Thomas, A., Antonietti, M.: Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J. Chem. 31(6), 787 (2007)

    Article  Google Scholar 

  • Vom Eyser, C., Palmu, K., Otterpohl, R., Schmidt, T.C., Tuerk, J.: Determination of pharmaceuticals in sewage sludge and biochar from hydrothermal carbonization using different quantification approaches and matrix effect studies. Anal. Bioanal. Chem. 407(3), 821–830 (2015)

    Article  Google Scholar 

  • Vom Eyser, C., Schmidt, T.C., Tuerk, J.: Fate and behaviour of diclofenac during hydrothermal carbonization. Chemosphere 153, 280–286 (2016)

    Article  Google Scholar 

  • Weiner, B., Baskyr, I., Poerschmann, J., Kopinke, F.-D.: Potential of the hydrothermal carbonization process for the degradation of organic pollutants. Chemosphere 92(6), 674–680 (2013)

    Article  Google Scholar 

  • Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B.: The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21(9), 1218–1230 (2016)

    Article  Google Scholar 

  • Wirth, B., Mumme, J., Erlach, B.: Anaerobic Treatment of Waste Water Derived from Hydrothermal Carbonization (2012). Accessed 19 July 2016

    Google Scholar 

  • Yoshida, H., Christensen, T.H., Scheutz, C.: Life cycle assessment of sewage sludge management: a review. Waste Manage. Res.: J. Int. Solid Wastes and Public Cleansing Assoc. ISWA 31(11), 1083–1101 (2013)

    Article  Google Scholar 

  • Yue, Y., Yao, Y., Lin, Q., Li, G. and Zhao, X.: The change of heavy metals fractions during hydrochar decomposition in soils amended with different municipal sewage sludge hydrochars. J. Soils and Sediments (2016)

    Google Scholar 

  • Zhao, X., Becker, G.C., Faweya, N., Rodriguez Correa, C., Yang, S., Xie, X., Kruse, A.: Fertilizer and activated carbon production by hydrothermal carbonization of digestate. Biomass Convers. Biorefinery 19, 292 (2017)

    Google Scholar 

Download references

Acknowledgements

This publication is a result of a project funded with federal state resources from the “Niedersächsisches Vorab”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Gievers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gievers, F., Loewen, A., Nelles, M. (2019). Hydrothermal Carbonization (HTC) of Sewage Sludge: GHG Emissions of Various Hydrochar Applications. In: Schebek, L., Herrmann, C., Cerdas, F. (eds) Progress in Life Cycle Assessment. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-92237-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92237-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92236-2

  • Online ISBN: 978-3-319-92237-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics