Skip to main content

Non-linear Beatings as Non-stationary Synchronization of Weakly Coupled Autogenerators

  • Chapter
  • First Online:
Problems of Nonlinear Mechanics and Physics of Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 94))

  • 1139 Accesses

Abstract

The present work represents a selective overview of recent advances in the area dealing with a new type of synchronization in systems of weakly coupled active oscillators. The description is focused on the evolution of non-stationary beat wise self-sustained oscillations developed as attractors and repellers when the system non-linearity and dissipation is varied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pikovsky, A., Rosenblum, M.J., Kurths, A.: Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  2. Verhulst, F.: Invariant Manifolds in Dissipative Dynamical Systems. Acta Appl. Math. 87, 229–244 (2005)

    Article  MathSciNet  Google Scholar 

  3. Rand, R.H., Holmes, P.J.: Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. Int. J. Nonlinear Mech. 15, 387–399 (1980)

    Article  MathSciNet  Google Scholar 

  4. Chakraborty, T., Rand, R.H.: The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators. Int. J. Nonlinear Mech. 23, 369–376 (1988)

    Article  MathSciNet  Google Scholar 

  5. Rompala, K., Rand, R.: Howland, H: Dynamics of three coupled Van der Pol oscillators, with application to circadian rhythms. Commun. Nonlinear Sci. 12, 794–803 (2007)

    Article  MathSciNet  Google Scholar 

  6. Kuznetsov, A.P., Stankevich, N.V., Turukina, L.V.: Coupled van der Pol–Duffing oscillators: Phase dynamics and structure of synchronization tongues. Physica. D 238, 1203–1215 (2009)

    Google Scholar 

  7. Mihalache, D., Mazilu, D., Lederer, F., Kivshar, YuS: Collisions between discrete spatiotemporal dissipative Ginzburg-Landau solitons in two-dimensional photonic lattices Phys. Rev. A 77, 043828 (2008)

    Article  Google Scholar 

  8. Malomed, B.A.: Waves and solitary pulses in a weakly inhomogeneous Ginzburg-Landau equations. Phys. Rev. E 50, 4249–4252 (1994)

    Article  MathSciNet  Google Scholar 

  9. Akhmediev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams, vol. 9. Chapman and Hall, London (1992)

    MATH  Google Scholar 

  10. Blekhman, I.I.: Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications. World Scientific, London (2000)

    Book  Google Scholar 

  11. Manevitch, L.I., Smirnov, V.V.: Resonant energy exchange in nonlinear oscillatory chains and Limiting Phase Trajectories: from small to large systems. In: Vakakis A.F (ed.) Advanced Nonlinear Strategies for Vibration Mitigation and System Identification, CISM Courses and Lectures, vol 518. Springer, New York (2010)

    Google Scholar 

  12. Vakakis, A.F., Manevitch, L.I., Mikhlin, YuV, Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)

    Book  Google Scholar 

  13. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77, 301–312 (2007)

    Article  Google Scholar 

  14. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82, 036602 (2010)

    Article  MathSciNet  Google Scholar 

  15. Manevitch, L.I., Kovaleva, M.A., Pilipchuk, V.N.: Non-conventional synchronization of weakly coupled active oscillators. EPL—Europhys. Lett. 101, 50002 (2013)

    Article  Google Scholar 

  16. Kovaleva, M.A., Manevich, L.I., Pilipchuk, V.N.: New Type of Synchronization of Oscillators with Hard Excitation. J. Exp. Theor. Phys. 117(2), 369–377 (2013)

    Article  Google Scholar 

  17. Kovaleva, M.A., Pilipchuk, V., Manevich, L.I.: Nonconventional synchronization and energy localization in weakly coupled autogenerators. Phys. Rev. E 94, 032223 (2016)

    Google Scholar 

  18. Kovaleva, M., Manevitch, L.I., Pilipchuk, V.: Non-conventional phase attractors and repellers in weakly coupled autogenerators with hard excitation. EPL—Europhys. Lett EPL 120, 30007 (2017)

    Article  Google Scholar 

  19. Manevitch, L.I., Kovaleva, M.A.: Vibration Analog of a Superradiant Quantum Transition Dokl. Phys. 58(10), 428–432 (2013)

    Google Scholar 

  20. Kovaleva, M.A., Manevich, L.: I: Superradiant Transition and Its Classical Analogue Russian. J. Phys. Chem. B 7(5), 534–539 (2013)

    Google Scholar 

  21. Pilipchuk, V.N.: Autolocalized modes in array of nonlinear coupled oscillators. In: Manevich A.I., Manevitch, L.I. (eds.) Problems of Nonlinear Mechanics and Physics of Materials. RIK NGA, Dnepropetrovsk (1999)

    Google Scholar 

  22. Ovsyannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    Google Scholar 

  23. Preparata, G.: QED Coherence in Matter. World Scientific, Singapore (1995)

    Book  Google Scholar 

  24. Kovaleva, M.A., Manevitch, L.I.: Nonlinear normal modes in the system of weakly coupled Van-derPol-Duffing oscillators. In: Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, J. (eds.) Dynamical Systems. Analytical/Numerical Methods, Stability, Bifurcation and Chaos, pp. 85–90. Lódz, December 5-8, 2011, Poland (2011)

    Google Scholar 

  25. Manevitch, L.I., Gendelman, O.V.: Tractable Models of Solid Mechanics: Formulation. Springer, New York (2011)

    Book  Google Scholar 

  26. Pilipchuk, V.N.: Nonlinear Dynamics: Between Linear and Impact Limits. Springer, New York (2010)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of Fundamental Researches of the Russian Academy of Sciences (project No. 0082-2014-0013, state registration number AAAA-A17-117042510268-5)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita A. Kovaleva .

Editor information

Editors and Affiliations

Appendix: Symmetry Analysis

Appendix: Symmetry Analysis

The conditions of the system invariance leads to partial differential equations for the constituents of operator (3) as follows

$$ \begin{aligned} & \eta_{\tau } + p_{1} \eta_{{R_{1} }} + p_{2} \eta_{{R_{2} }} + p_{3} \eta_{\varDelta } - p_{1} \xi_{\tau } - p_{1}^{2} \xi_{{R_{1} }} - p_{1} p_{2} \xi_{{R_{2} }} - p_{1} p_{3} \xi_{\varDelta } \\ & \quad = \xi \left[ { - \gamma p_{1} + 3bR_{1}^{2} p_{1} - 10dR_{1}^{4} p_{1} + \beta p_{2} \sin \varDelta + p_{3} \beta R_{2} \cos \varDelta } \right] \\ & \quad + \eta \left[ { - \gamma + 3bR_{1}^{2} - 10dR_{1}^{4} } \right] + \zeta \left[ {\beta \,\sin \varDelta } \right] + \varsigma \left[ {\beta R_{2} \cos \varDelta } \right] \\ \end{aligned} $$
$$ \begin{aligned} & \zeta_{\tau } + p_{1} \zeta_{{R_{1} }} + p_{2} \zeta_{{R_{2} }} + p_{3} \zeta_{\Delta } - p_{2} \xi_{\tau } - p_{1} p_{2} \xi_{{R_{1} }} - p_{2}^{2} \xi_{{R_{2} }} - p_{2} p_{3} \xi_{\Delta } \\ & \quad = \xi \left[ { - \gamma p_{2} + 3bR_{2}^{2} p_{2} - 10dR_{2}^{4} p_{2} + \beta p_{1} sin\Delta - p_{3} \beta R_{1} cos\Delta } \right] \\ & \quad + \eta \left[ {\beta \,sin\Delta } \right] + \zeta \left[ { - \gamma + 3bR_{2}^{2} - 10dR_{2}^{4} } \right] + \varsigma \left[ { - \beta R_{1} cos\Delta } \right] \\ \end{aligned} $$
(1A)
$$ \begin{aligned} & \varsigma_{\tau } + p_{1} \varsigma_{{R_{1} }} + p_{2} \varsigma_{{R_{2} }} + p_{3} \varsigma_{\varDelta } - p_{3} \xi_{\tau } - p_{1} p_{3} \xi_{{R_{1} }} - p_{1} p_{2} \xi_{{R_{2} }} - p_{3}^{2} \xi_{\varDelta } \\ & \quad = \xi \left[ { - 3\alpha \left( {2R_{2} p_{2} - 2R_{1} p_{1} } \right) - \beta \left( {\cos \varDelta \left( {R_{1} p_{2} - R_{2} p_{1} } \right)\frac{{\left( {R_{1}^{2} + R_{2}^{2} } \right)}}{{R_{1}^{2} R_{2}^{2} }} + \beta \,\sin \varDelta \frac{{\left( {R_{2}^{2} - R_{1}^{2} } \right)}}{{R_{1} R_{2} }}p_{3} } \right)} \right] \\ & \quad + \eta \left( {6\alpha R_{1}^{2} + \beta \,\cos \varDelta \frac{{\left( {R_{1}^{2} + R_{2}^{2} } \right)}}{{R_{1}^{2} R_{2} }}} \right) - \zeta \left( {6\alpha R_{2}^{2} + \beta \,\cos \varDelta \frac{{\left( {R_{1}^{2} + R_{2}^{2} } \right)}}{{R_{1} R_{2}^{2} }}} \right) + \varsigma \left( {\beta \,\sin \varDelta \frac{{\left( {R_{2}^{2} - R_{1}^{2} } \right)}}{{R_{1} R_{2} }}} \right) \\ \end{aligned} $$

Solving Eq. (1A), gives the Lie group operator

$$ \begin{aligned} X & = \frac{\partial }{{\partial \tau_{1} }} + ( - \gamma R_{1} + bR_{1}^{3} - 2dR_{1}^{5} + \beta R_{2} \sin \Delta )\frac{\partial }{{\partial R_{1} }} + ( - \gamma R_{2} + bR_{2}^{3} - 2dR_{2}^{5} - \beta R_{1} \sin \Delta )\frac{\partial }{{\partial R_{2} }} \\ & \quad + \left( { - 3\alpha (R_{2}^{2} - R_{1}^{2} ) - \beta \frac{{(R_{2}^{2} - R_{1}^{2} )}}{{R_{1} R_{2} }}\cos \Delta } \right)\frac{\partial }{\partial \Delta } + X_{1} \\ \end{aligned} $$

If exists, the corresponding invariant, say I, must satisfy the condition

$$ \begin{aligned} XI & \equiv \frac{\partial I}{{\partial \tau_{1} }} + ( - \gamma R_{1} + bR_{1}^{3} - 2dR_{1}^{5} + \beta R_{2} \sin \varDelta )\frac{\partial I}{{\partial R_{1} }} \\ & \quad + ( - \gamma R_{2} + bR_{2}^{3} - 2dR_{2}^{5} - \beta R_{1} \sin \varDelta )\frac{\partial }{{\partial R_{2} }} \\ & \quad + \left( { - 3\alpha (R_{2}^{2} - R_{1}^{2} ) - \beta \frac{{(R_{2}^{2} - R_{1}^{2} )}}{{R_{1} R_{2} }}\cos \varDelta } \right)\frac{\partial I}{\partial \varDelta } + X_{1} I = 0 \\ \end{aligned} $$

As mentioned in the main text, it is assumed that \( I{\kern 1pt} = I\left( {R_{1} ,R_{2} } \right) \). In this case, the variables \( R_{1} ,R_{2} \) satisfy the following ordinary differential equation, which can be also directly obtained from first two Eqs. (3),

$$ \frac{{dR_{1} }}{{( - \gamma R_{1} + bR_{1}^{3} - 2dR_{1}^{5} + \beta R_{2} \sin \varDelta )}} = \frac{{dR_{2} }}{{( - \gamma R_{2} + bR_{2}^{3} - 2dR_{2}^{5} - \beta R_{1} \sin \varDelta )}} $$
(2A)

The group operator becomes a rotation operator with the invariant \( I{\kern 1pt} \equiv N = R_{1}^{2} + R_{2}^{2} \) if the parameters of the system (3) satisfy the relation \( b^{2} = 9\gamma d/2 \) while the initial conditions provide the excitation level \( N = 2b/3d \). This can be easily proved using the combination of 1st equation of (3) multiplied by R1 minus 2nd equation of (3) multiplied by R2.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovaleva, M.A., Manevitch, L.I., Pilipchuk, V.N. (2019). Non-linear Beatings as Non-stationary Synchronization of Weakly Coupled Autogenerators. In: Andrianov, I., Manevich, A., Mikhlin, Y., Gendelman, O. (eds) Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-92234-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92234-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92233-1

  • Online ISBN: 978-3-319-92234-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics