Skip to main content

On Higher Order Effective Boundary Conditions for a Coated Elastic Half-Space

  • Chapter
  • First Online:
Problems of Nonlinear Mechanics and Physics of Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 94))

Abstract

Higher order effective boundary conditions are derived for a coated half-space. Comparison with the long wavelength expansion of the exact solution of a plane time-harmonic problem for the coating demonstrates the validity of the proposed formulation. At the same time the corrections to the simplest leading order effective conditions, earlier obtained in the widely cited paper (Bövik (1996). J. Appl. Mech. 63(1), 162–167.) [1], are proven to be asymptotically inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bövik, P.: A comparison between the Tiersten model and O(h) boundary conditions for elastic surface waves guided by thin layers. J. Appl. Mech. 63(1), 162–167 (1996)

    Article  Google Scholar 

  2. Chattopadhyay, D.K., Raju, K.: Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 32(3), 352–418 (2007)

    Article  Google Scholar 

  3. Hauert, R.: A review of modified DLC coatings for biological applications. Diam. Relat. Mater. 12(3–7), 583–589 (2003)

    Article  Google Scholar 

  4. Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296(5566), 280–284 (2002)

    Article  Google Scholar 

  5. Veprek, S., Veprek-Heijman, M.J.: Industrial applications of superhard nanocomposite coatings. Surf. Coat. Technol. 202(21), 5063–5073 (2008)

    Article  Google Scholar 

  6. Tiersten, H.: Elastic surface waves guided by thin films. J. Appl. Phys. 40(2), 770–789 (1969)

    Article  Google Scholar 

  7. Dai, H.H., Kaplunov, J., Prikazchikov, D.: A long-wave model for the surface elastic wave in a coated half-space. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 466, 3097–3116 (2010). The Royal Society

    Google Scholar 

  8. Malischewsky, P.G., Scherbaum, F.: Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion 40(1), 57–67 (2004)

    Article  MathSciNet  Google Scholar 

  9. Niklasson, A.J., Datta, S.K., Dunn, M.L.: On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions. J. Acoust. Soc. Am. 108(3), 924–933 (2000)

    Article  Google Scholar 

  10. Wang, J., Du, J., Lu, W., Mao, H.: Exact and approximate analysis of surface acoustic waves in an infinite elastic plate with a thin metal layer. Ultrasonics 44, e941–e945 (2006)

    Article  Google Scholar 

  11. Godoy, E., Durán, M., Nédélec, J.C.: On the existence of surface waves in an elastic half-space with impedance boundary conditions. Wave Motion 49(6), 585–594 (2012)

    Article  MathSciNet  Google Scholar 

  12. Pham, C.V., Vu, A.: Effective boundary condition method and approximate secular equations of Rayleigh waves in orthotropic half-spaces coated by a thin layer. J. Mech. Mater. Struct. 11(3), 259–277 (2016)

    Article  MathSciNet  Google Scholar 

  13. Vinh, P.C., Xuan, N.Q.: Rayleigh waves with impedance boundary condition: formula for the velocity, existence and uniqueness. Eur. J. Mech.-A/Solids 61, 180–185 (2017)

    Article  MathSciNet  Google Scholar 

  14. Aghalovyan, L.: Asymptotic Theory of Anisotropic Plates and Shells. World Scientific (2015)

    Google Scholar 

  15. Andrianov, I.V., Awrejcewicz, J., Manevitch, L.I.: Asymptotical Mechanics of Thin-Walled Structures. Springer Science and Business Media (2013)

    Google Scholar 

  16. Chebakov, R., Kaplunov, J., Rogerson, G.: Refined boundary conditions on the free surface of an elastic half-space taking into account non-local effects. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472, 20150800 (2016). The Royal Society

    Google Scholar 

  17. Kaplunov, J., Prikazchikov, D.: Explicit models for surface, interfacial and edge waves. In: Craster, R., Kaplunov, J. (eds.) Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism, vol. 547, pp. 73–114. Springer, Berlin (2013)

    Google Scholar 

  18. Kaplunov, J., Prikazchikov, D.A.: Asymptotic theory for Rayleigh and Rayleigh-type waves. Adv. Appl. Mech. 50, 1–106 (2017)

    Article  Google Scholar 

  19. Erbaş, B., Kaplunov, J., Prikazchikov, D.A., Şahin, O.: The near-resonant regimes of a moving load in a three-dimensional problem for a coated elastic half-space. Math. Mech. Solids 22(1), 89–100 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kaplunov, J., Prikazchikov, D., Erbaş, B., Şahin, O.: On a 3D moving load problem for an elastic half space. Wave Motion 50(8), 1229–1238 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Education and Science of the Republic of Kazakhstan, Grant IRN AP05132743. The Keele University ACORN Scholarship for L. Sultanova is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Kaplunov .

Editor information

Editors and Affiliations

Appendix

Appendix

The constants in (49) are

$$\begin{aligned} A_1=h\dfrac{N_1}{D}, \quad A_2={\mathrm e}^{kh\alpha }h\dfrac{N_2}{D}, \quad A_3=-h\dfrac{N_3}{D}, \quad A_4=-{\mathrm e}^{kh\beta }h\dfrac{N_4}{D}, \end{aligned}$$
(59)

where

$$\begin{aligned} \begin{array}{l} N_1=iB_1\left( {\mathrm e}^{kh\alpha }(D_1\alpha \beta +D_2\gamma ^4)-2{\mathrm e}^{kh\beta }\alpha \beta \gamma ^2\right) \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad -B_3\beta \left( {\mathrm e}^{kh\alpha }(D_2\alpha \beta +D_1\gamma ^4)-2{\mathrm e}^{kh\beta }\gamma ^2\right) ,\\ N_2=iB_1\left( D_1\alpha \beta -2{\mathrm e}^{kh(\alpha +\beta )}\alpha \beta \gamma ^2-\gamma ^4D_2\right) \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad +B_3\beta \left( D_1\gamma ^4-D_2\alpha \beta -2{\mathrm e}^{kh(\alpha +\beta )}\gamma ^2\right) ,\\ N_3=iB_3\left( {\mathrm e}^{kh\beta }(D_3\alpha \beta +D_4\gamma ^4)-2{\mathrm e}^{kh\alpha }\alpha \beta \gamma ^2\right) \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad +B_1\alpha \left( {\mathrm e}^{kh\beta }(D_4\alpha \beta +D_3\gamma ^4)-2{\mathrm e}^{kh\alpha }\gamma ^2\right) ,\\ N_4=iB_3\left( D_3\alpha \beta -2{\mathrm e}^{kh(\alpha +\beta )}\alpha \beta \gamma ^2-\gamma ^4D_4\right) \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad -B_1\alpha \left( D_3\gamma ^4-D_4\alpha \beta -2{\mathrm e}^{kh(\alpha +\beta )}\gamma ^2\right) ,\\ \text {and}\\ D=k\left[ 8{\mathrm e}^{kh(\alpha +\beta )}\alpha \beta \gamma ^2+D_2D_4(\alpha ^2\beta ^2+\gamma ^4)-D_1D_3\alpha \beta (1+\gamma ^4)\right] , \end{array} \end{aligned}$$
(60)

with

$$\begin{aligned} D_1=1+{\mathrm e}^{2kh\beta },\quad D_2=1-{\mathrm e}^{2kh\beta },\quad D_3=1+{\mathrm e}^{2kh\alpha },\quad D_4=1-{\mathrm e}^{2kh\alpha }. \end{aligned}$$
(61)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaplunov, J., Prikazchikov, D., Sultanova, L. (2019). On Higher Order Effective Boundary Conditions for a Coated Elastic Half-Space. In: Andrianov, I., Manevich, A., Mikhlin, Y., Gendelman, O. (eds) Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-92234-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92234-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92233-1

  • Online ISBN: 978-3-319-92234-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics