Skip to main content

2D Chain Models of Nanoribbon Scrolls

  • Chapter
  • First Online:
Problems of Nonlinear Mechanics and Physics of Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 94))

Abstract

We propose a simplified 2D model of the molecular chain that allows to describe molecular nanoribbon’s scrolled packings of various structures as spiral packaging chain. The model allows to obtain the possible stationary states of single-layer nanoribbons scrolls of graphene, graphane, fluorographene, fluorographane, graphone C\(_4\)H and fluorographone C\(_4\)F. We show the stability of scrolled packings and calculate the dependence of energy, the number of coils, inner and outer radius of the scrolled packing on the nanoribbon length. It is shown that a scrolled packing is the most energetically favorable conformation for nanoribbons of graphene, graphane, fluorographene, and fluorographane at large lengths. A double-scrolled packing when the nanoribbon is symmetrically rolled into a scroll from opposite ends is more advantageous for longer lengths nanoribbons of graphone and fluorographone. We show the possibility of existence of scrolled packings for nanoribbons of fluorographene and existence of two different types of scrolls for nanoribbons of fluorographane. The simplicity of the proposed model allows to consider the dynamics of molecular nanoribbon scrolls of sufficiently large lengths and at sufficiently large time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Google Scholar 

  2. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Google Scholar 

  3. Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127 (2010)

    Google Scholar 

  4. Baimova, J.A., Liu, B., Dmitriev, S.V., Srikanth, N., Zhou, K.: Mechanical properties of bulk carbon nanostructures: effect of loading and temperature. Phys. Chem. Chem. Phys. 16, 19505 (2014)

    Google Scholar 

  5. Baimova, J.A., Korznikova, E.A., Dmitriev, S.V., Liu, B., Zhou, K.: Review on crumpled graphene: unique mechanical properties. Rev. Adv. Mater. Sci. 39, 69 (2014)

    Google Scholar 

  6. Bollmann, W., Spreadborough, J.: Action of graphite as a lubricant. Nature 186, 29 (1960)

    Google Scholar 

  7. Cheng, G., Calizo, I., Liang, X., Sperling, B.A., Johnston-Peck, A.C., Li, W., Maslar, J.E., Richtera, C.A., Walker, A.R.H.: Carbon scrolls from chemical vapor deposition grown graphene. Carbon 76, 257 (2014)

    Google Scholar 

  8. Zhou, H.Q., Qiu, C.Y., Yang, H.C., Yu, F., Chen, M.J., Hu, L.J., Guo, Y.J., Sun, L.F.: Raman spectra and temperature-dependent Raman scattering of carbon nanoscrolls. Chem. Phys. Lett. 501, 475 (2011)

    Google Scholar 

  9. Chen, X., Boulos, R.A., Dobson, J.F., Raston, C.L.: Shear induced formation of carbon and boron nitride nano-scrolls. Nanoscale 5, 498 (2013)

    Google Scholar 

  10. Savoskin, M.V., Mochalin, V.N., Yaroshenko, A.P., Lazareva, N.I., Konstantinova, T.E., Barsukov, I.V., Prokofiev, I.G.: Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 45, 2797 (2007)

    Google Scholar 

  11. Xie, X., Ju, L., Feng, X., Sun, Y., Zhou, R., Liu, K., Fan, S., Li, Q., Jiang, K.: Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 9, 2565 (2009)

    Google Scholar 

  12. Chuvilin, A.L., Kuznetsov, V.L., Obraztsov, A.N.: Chiral carbon nanoscrolls with a polygonal cross-section. Carbon 47, 3099 (2009)

    Google Scholar 

  13. Pan, H., Feng, Y., Lin, J.: Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Phys. Rev. B 72, 085415 (2005)

    Google Scholar 

  14. Rurali, R., Coluci, V.R., Galvao, D.S.: Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: first-principles calculations. Phys. Rev. B 74, 085414 (2006)

    Google Scholar 

  15. Chen, Y., Lu, J., Gao, Z.: Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C 111, 1625 (2007)

    Google Scholar 

  16. Shi, X., Pugno, N.M., Cheng, Y., Gao, H.: Gigahertz breathing oscillators based on carbon nanoscrolls. Appl. Phys. Lett. 95, 163113 (2009)

    Google Scholar 

  17. Martins, B.V.C., Galvao, D.S.: Curved graphene nanoribbons: structure and dynamics of carbon nanobelts. Nanotechnology 21, 075710 (2010)

    Google Scholar 

  18. Huang, S., Wang, B., Feng, M., Xu, X., Cao, X., Wang, Y.: Carbon nanoscrolls fabricated from graphene nanoribbons using Ni nanowire templates: a molecular dynamics simulation. Surf. Sci. 634, 3 (2015)

    Google Scholar 

  19. Perim, E., Paupitz, R., Galvao, D.S.: Controlled route to the fabrication of carbon and boron nitride nanoscrolls: a molecular dynamics investigation. J. Appl. Phys. 113, 054306 (2013)

    Google Scholar 

  20. Wang, Y., Zhan, H.F., Yang, C., Xiang, Y., Zhang, Y.Y.: Formation of carbon nanoscrolls from graphene nanoribbons: a molecular dynamics study. Comput. Mater. Sci. 96, 300 (2015)

    Google Scholar 

  21. Shi, X., Cheng, Y., Pugno, N.M., Gao, H.: A translational nanoactuator based on carbon nanoscrolls on substrates. J. Appl. Phys. 96, 053115 (2010)

    Google Scholar 

  22. Zhang, Z., Li, T.: Carbon nanotube initiated formation of carbon nanoscrolls. Appl. Phys. Lett. 97, 081909 (2010)

    Google Scholar 

  23. Chu, L., Xue, Q., Zhang, T., Ling, C.: Fabrication of carbon nanoscrolls from monolayer graphene controlled by p-doped silicon nanowires: a MD simulation study. J. Phys. Chem. C 115, 15217 (2011)

    Google Scholar 

  24. Patra, N., Song, Y., Kral, P.: Self-assembly of graphene nanostructures on nanotubes. ACS Nano 5, 1798 (2011)

    Google Scholar 

  25. Song, H.Y., Geng, S.F., An, M.R., Zha, X.W.: Temperature-induced unfolding of scrolled graphene and folded graphene. J. Appl. Phys. 113, 164305 (2013)

    Google Scholar 

  26. Yin, Q., Shi, X.: Mechanics of rolling of nanoribbon on tube and sphere. Nanoscale 5, 5450 (2013)

    Google Scholar 

  27. Shi, X., Pugno, N.M., Gao, H.: Mechanics of carbon nanoscrolls: a review. Acta Mech. Solida Sin. 23, 484 (2010)

    Google Scholar 

  28. Shi, X., Pugno, N.M., Gao, H.: Constitutive behavior of pressurized carbon nanoscrolls. Int. J. Fract. 171, 163 (2011)

    Google Scholar 

  29. Savin, A.V., Korznikova, E.A., Dmitriev, S.V.: Scroll configurations of carbon nanoribbons. PRB 92, 035412 (2015)

    Google Scholar 

  30. Savin, A.V., Korznikova, E.A., Dmitriev, S.V.: Simulation of folded and scrolled packings of carbon nanoribbons. Fiz. Tver. Tela 57(11), 2278–2285 (2015). [Phys. Solid State 57 (11) 2348-2355 (2015)]

    Google Scholar 

  31. Sun, H.: Compass: an Ab initio force-field optimized for condensed-phase applications – overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338 (1998)

    Google Scholar 

  32. Jin, Y., Xue, Q., Zhu, L., Li, X., Pan, X., Zhang, J., Xing, W., Wu, T., Liu, Z.: Self-assembly of hydrofluorinated Janus graphene monolayer: a versatile route for designing novel Janus nanoscrolls. Sci. Rep. 6, 26914 (2016). https://doi.org/10.1038/srep26914

  33. Boukhvalov, D.W., Katsnelson, M.I.: Chemical functionalization of graphene. J. Phys. Condens. Matter 21, 344205 (2009)

    Google Scholar 

  34. Reddy, C.D., Zhang, Y.-W.: Structure manipulation of graphene by hydrogenation. Carbon 69, 86–91 (2014)

    Google Scholar 

  35. Zhu, S., Li, T.: Hydrogenation enabled scrolling of graphene. J. Phys. D Appl. Phys. 46, 075301 (2013)

    Google Scholar 

  36. Liu, Z., Xue, Q., Tao, Y., Li, X., Wu, T., Jinb, Y., Zhang, Z.: Carbon nanoscroll from C4H/C4F-type graphene superlattice: MD and MM simulation insights. Phys. Chem. Chem. Phys. 17(5), 3441–3450 (2015)

    Google Scholar 

  37. Zhang, L., Zeng, X., Wang, X.: Programmable hydrogenation of graphene for novel nanocages. Sci. Rep. 3(3162) (2013). https://doi.org/10.1038/srep03162

Download references

Acknowledgements

This work is supported by the Russian Science Foundation under grant 16-13-10302. The research was carried out using supercomputers at Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Savin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savin, A.V., Mazo, M.A. (2019). 2D Chain Models of Nanoribbon Scrolls. In: Andrianov, I., Manevich, A., Mikhlin, Y., Gendelman, O. (eds) Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-92234-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92234-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92233-1

  • Online ISBN: 978-3-319-92234-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics