Skip to main content

B\(\leftrightarrow \)A Transition in a Short DNA Molecule

  • Chapter
  • First Online:
Problems of Nonlinear Mechanics and Physics of Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 94))

Abstract

In the framework of the ‘sugar’ coarse-grained DNA model [N.A. Kovaleva, I.P. Koroleva (Kikot), M.A. Mazo, Journal of Molecular Modeling 23(2):66 (2017), https://doi.org/10.1007/s00894-017-3209-z], we study the transition between B and A forms of a short DNA molecule (12 base pairs) when the concentration of salt changes. The model exploits the explicit ions and implicit water representation and allows to separately change the friction of the ions and of the DNA molecule. We compare the behavior of the system for different values of friction which proved to not affect the order of the transition, but allowed to determine the roles of the DNA and the ions in the behavior of the conglomerate. We find the order (the first) and the point of the transition (0.316 M) in the case of ‘inviscid’ water (zero friction for both the ions and the DNA, the NVE ensemble). The helix consisting of 12 bp (more than thousand atoms) proved to exhibit the features of small systems. Namely, even at low salt concentrations, one can observe the jumps from B-DNA to A-DNA and back. We analyse the structure of the A-DNA and find the reasons for such a behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lebrun, A., Lavery, R.: Modeling DNA deformations induced by minor groove binding proteins. Biopolymers 49(5), 341–353 (1999). https://doi.org/10.1002/(sici)1097-0282(19990415)49:5%3C341::aid-bip1%3E3.0.co;2-c

  2. Lu, X.J., Shakked, Z., Olson, W.: A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 300(4), 819–840 (2000). https://doi.org/10.1006/jmbi.2000.3690

  3. Timsit, Y.: DNA structure and polymerase fidelity. J. Mol. Biol. 293(4), 835–853 (1999). https://doi.org/10.1006/jmbi.1999.3199

  4. Ivanov, V., Minchenkova, L., Schyolkina, A., Poletayev, A.: Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12(1), 89–110 (1973). https://doi.org/10.1002/bip.1973.360120109

  5. Nishimura, Y., Torigoe, C., Tsuboi, M.: Salt induced B - A transition of poly(dG).poly(dC) and the stabilization of A form by its methylation. Nucl. Acids Res. 14, 2737–2748 (1986)

    Google Scholar 

  6. Feig, M., Pettitt, B.M.: Experiment versus force fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B 101(38), 7361–7363 (1997). https://doi.org/10.1021/jp971180a

  7. Pastor, N.: The B- to A-DNA transition and the reorganization of solvent at the DNA surface. Biophys. J. 88(5), 3262 (2005). https://doi.org/10.1529/biophysj.104.058339

  8. Hart, K., Foloppe, N., Baker, C.M., Denning, E.J., Nilsson, L., MacKerell, A.D.: Optimization of the charmm additive force field for DNA: improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 8(1), 348–362 (2012). https://doi.org/10.1021/ct200723y

  9. Waters, J.T., Lu, X.J., Galindo-Murillo, R., Gumbart, J.C., Kim, H.D., Cheatham, T.E., Harvey, S.C.: Transitions of double-stranded DNA between the A- and B-forms. J. Phys. Chem. B 120(33), 8449–8456 (2016). https://doi.org/10.1021/acs.jpcb.6b02155

  10. Ivani, I., Dans, P.D., Noy, A., Pérez, A., Faustino, I., Hospital, A., Walther, J., Andrio, P., Goñi, R., Balaceanu, A., Portella, G., Battistini, F., Gelpí, J.L., González, C., Vendruscolo, M., Laughton, C.A., Harris, S.A., Case, D.A., Orozco, M.: Parmbsc1: a refined force field for DNA simulations. Nat. Methods 13(1), 55–58 (2015). https://doi.org/10.1038/nmeth.3658

  11. Kovaleva, N., Koroleva (Kikot), I., Mazo, M., Zubova, E.: The sugar coarse-grained DNA model. J. Mol. Model. 23(2), 66 (2017). https://doi.org/10.1007/s00894-017-3209-z

  12. Savin, A., Mazo, M., Kikot, I., Manevitch, L., Onufriev, A.: Heat conductivity of the DNA double helix. Phys. Rev. B 83(24), 245,406 (2011). https://doi.org/10.1103/physrevb.83.245406

  13. Klinov, A.P., Zubova, E.A., Mazo, M.A.: Temperature and concentration dependence of effective potentials of Na+ and Cl-ions in aqueous solution. Phys. Chem. Asp. Study Clust. Nanostruct. Nanomater. (9), 230–235 (2017). https://doi.org/10.26456/pcascnn/2017.9.230

Download references

Acknowledgements

We thank Dr. I.A. Strelnikov for pointing out some errata in numerical values and in one formula in the tables in [11]. We appreciate financial support of the Russian Science Foundation (grant 16-13-10302). The simulations were carried out in the Joint Supercomputer Center of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalya A. Kovaleva .

Editor information

Editors and Affiliations

Appendix: The Sugar DNA CG Force Field: Potential Functions and Parameters

Appendix: The Sugar DNA CG Force Field: Potential Functions and Parameters

In the Tables 1, 2, 3, 4, 5 and 6, we list the current potentials of interactions between the grains of the sugar GC DNA model, and the corresponding constants of the model.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovaleva, N.A., Zubova, E.A. (2019). B\(\leftrightarrow \)A Transition in a Short DNA Molecule. In: Andrianov, I., Manevich, A., Mikhlin, Y., Gendelman, O. (eds) Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-92234-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92234-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92233-1

  • Online ISBN: 978-3-319-92234-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics