Skip to main content

Recent Developments in Theory and Modeling of Polymer-Based Nanocomposites

  • Chapter
  • First Online:
Problems of Nonlinear Mechanics and Physics of Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 94))

Abstract

Polymer-based nanocomposites represent relatively new class of materials, often with unique synergy of polymer (“matrix”) and inorganic (“filler”) properties. In recent years, the industry developed new techniques to reduce the size of the fillers (from 10–100 microns in conventional composites to <100 nm in nanocomposites), and to functionalize their surfaces, thus enabling better control over the spatial distribution of the particles in the matrix. The structure of resulting materials is thus a complex product of particle/polymer interactions, particle size and shape, and processing history. In turn, the properties of the composite material are a function of its microstructure (e.g., particle aggregation or dispersion), as well as the properties of the matrix, filler, and interfacial regions. Today, theory and modeling of nanocomposites is one of the most rapidly developing areas in Polymer Science. In this review, I discuss theoretical and computational work related to the prediction of the nanocomposite structure and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akcora, P. et al.: Anisotropic self-assembly of spherical polymer-grafted nanoparticles Nat Mater 8:354–359 (2009)

    Google Scholar 

  2. Allegra, G., Raos, G., Vacatello, M.: Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog. Polym. Sci. 33, 683–731 (2008)

    Article  Google Scholar 

  3. Anderson, K.L., Sinsawat, A., Vaia, R.A., Farmer, B.: Control of silicate nanocomposite morphology in binary fluids: Coarse-grained molecular dynamics simulations. J. Polym. Sci., Part B: Polym. Phys. 43, 1014–1024 (2005)

    Article  Google Scholar 

  4. Asakura, S., Oosawa, F.: On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954)

    Article  Google Scholar 

  5. Asakura, S., Oosawa, F.: Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci., Part A: Polym. Chem. 33, 183–192 (1958)

    Google Scholar 

  6. Balazs, A.C., Bicerano, J., Ginzburg, V.V.: Polyolefin/clay nanocomposites: theory and simulation. In: Polyolefin Composites. Wiley, pp. 415–448 (2007)

    Google Scholar 

  7. Balazs, A.C., Ginzburg, V.V., Lyatskaya, Y., Singh, C., Zhulina, E.: Modeling the phase behavior of polymer-clay nanocomposites. In: Pinnavaia, T., Beall, G.W. (eds.) Polymer-Clay Nanocomposites, pp. 281–314. Wiley, New York (2000)

    Google Scholar 

  8. Balazs, A.C., Singh, C., Zhulina, E.: Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules 31, 8370–8381 (1998)

    Article  Google Scholar 

  9. Balazs, A.C., Singh, C., Zhulina, E., Lyatskaya, Y.: Modeling the phase behavior of polymer/clay nanocomposites. Accounts Chem Res 32, 651–657 (1999)

    Article  Google Scholar 

  10. Baljon, A.R.C., Lee, J.Y., Loring, R.F.: Molecular view of polymer flow into a strongly attractive slit. J Chem Phys 111, 9068–9072 (1999)

    Article  Google Scholar 

  11. Bicerano, J., et al.: Polymer modeling at the Dow Chemical Company. J. Macromol. Sci.-Polymer Rev. C44, 53–85 (2004)

    Article  Google Scholar 

  12. Bicerano, J., Douglas, J.F., Brune, D.A.: Model for the viscosity of particle dispersions. J. Macromol. Sci. R M C C39, 561–642 (1999)

    Article  Google Scholar 

  13. Bockstaller, M.R., Lapetnikov, Y., Margel, S., Thomas, E.L.: Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J. Am. Chem. Soc. 125, 5276–5277 (2003)

    Article  Google Scholar 

  14. Bourlinos, A.B., Herrera, R., Chalkias, N., Jiang, D.D., Zhang, Q., Archer, L.A., Giannelis, E.P.: Surface-functionalized nanoparticles with liquid-like behavior. Adv. Mater. 17, 234–237 (2005)

    Article  Google Scholar 

  15. Bourlinos, A.B., Ray Chowdhury, S., Herrera, R., Jiang, D.D., Zhang, Q., Archer, L.A., Giannelis, E.P.: Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures. Adv. Funct. Mater. 15, 1285–1290 (2005)

    Article  Google Scholar 

  16. Bozorgui, B., Meng, D., Kumar, S.K., Chakravarty, C., Cacciuto, A.: Fluctuation-driven anisotropic assembly in nanoscale systems. Nano Lett. 13, 2732–2737 (2013)

    Article  Google Scholar 

  17. Brune, D.A., Bicerano, J.: Micromechanics of nanocomposites: comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer 43, 369–387 (2002)

    Article  Google Scholar 

  18. Buxton, G.A., Lee, J.Y., Balazs, A.C.: Computer simulation of morphologies and optical properties of filled diblock copolymers. Macromolecules 36, 9631–9637 (2003)

    Article  Google Scholar 

  19. Chan, E.R., Ho, L.C., Glotzer, S.C.: Computer simulations of block copolymer tethered nanoparticle self-assembly. J. Chem. Phys. 125, 064905 (2006)

    Article  Google Scholar 

  20. Chao, H., Hagberg, B.A., Riggleman, R.A.: The distribution of homogeneously grafted nanoparticles in polymer thin films and blends. Soft Matter 10, 8083–8094 (2014)

    Article  Google Scholar 

  21. Chao, H.K., Lindsay, B.J., Riggleman, R.A.: Field-Theoretic Simulations of the Distribution of Nanorods in Diblock Copolymer Thin Films. J. Phys. Chem. B 121, 11198–11209 (2017)

    Article  Google Scholar 

  22. Chen, B., Evans, J.R., Greenwell, H.C., Boulet, P., Coveney, P.V., Bowden, A.A., Whiting, A.: A critical appraisal of polymer–clay nanocomposites. Chem. Soc. Rev. 37, 568–594 (2008)

    Article  Google Scholar 

  23. Choi, J., Hui, C.M., Schmitt, M., Pietrasik, J., Margel, S., Matyjazsewski, K., Bockstaller, M.R.: Effect of polymer-graft modification on the order formation in particle assembly structures. Langmuir 29, 6452–6459 (2013)

    Article  Google Scholar 

  24. de Pablo, J.J.: Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu. Rev. Phys. Chem. 62, 555–574 (2011)

    Article  Google Scholar 

  25. Edwards, S.F.: The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc. 85, 613 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, J., Heinz, H.: Modification of Inorganic Fillers and Interfacial Properties in Polyolefin Nanocomposites: Theory versus Experiment. In: Advances in Polyolefin Nanocomposites, pp. 205–224. CRC Press (2010)

    Google Scholar 

  27. Fernandes, N.J., Koerner, H., Giannelis, E.P., Vaia, R.A.: Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges. MRS Commun. 3, 13–29 (2013)

    Article  Google Scholar 

  28. Fernandes, N.J., Wallin, T.J., Vaia, R.A., Koerner, H., Giannelis, E.P.: Nanoscale Ionic Mater. Chem. Mater. 26, 84–96 (2013)

    Google Scholar 

  29. Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)

    Article  Google Scholar 

  30. Fredrickson, G.: The Equilibrium Theory of Inhomogeneous Polymers, vol. 134. Oxford University Press on Demand (2006)

    Google Scholar 

  31. Fredrickson, G.H., Bicerano, J.: Barrier properties of oriented disk composites. J. Chem. Phys. 110, 2181–2188 (1999)

    Article  Google Scholar 

  32. Fredrickson, G.H., Ganesan, V., Drolet, F.: Field-theoretic computer simulation methods for polymers and complex fluids. Macromolecules 35, 16–39 (2002)

    Article  Google Scholar 

  33. Ganesan, V., Ellison, C.J., Pryamitsyn, V.: Mean-field models of structure and dispersion of polymer-nanoparticle mixtures. Soft. Matter. 6, 4010–4025 (2010)

    Article  Google Scholar 

  34. Ganesan, V., Jayaraman, A.: Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites. Soft. Matter. 10, 13–38 (2014)

    Article  Google Scholar 

  35. Gendelman, O.V., Manevitch, L.I., Manevitch, O.L.: Solitonic mechanism of structural transition in polymer-clay nanocomposites. J Chem Phys 119, 1066–1069 (2003)

    Article  Google Scholar 

  36. Giannelis, E.P.: Polymer layered silicate nanocomposites. Adv. Mater. 8:29 (1996)

    Google Scholar 

  37. Ginzburg, V., Balazs, A.: Calculating phase diagrams for nanocomposites: the effect of adding end-functionalized chains to polymer/clay mixtures. Adv. Mater. 12, 1805–1809 (2000)

    Article  Google Scholar 

  38. Ginzburg, V., Singh, C., Balazs, A.: Predicting phase diagrams of polymer/clay composites: the role of grafted organic modifiers. Polymeric Mater. Sci. Eng. (USA) 82:217 (2000)

    Google Scholar 

  39. Ginzburg, V,, Weinhold, J., Hustad, P., Trefonas, P., Kim, B., Laachi, N., Fredrickson, G.: Field-theoretic simulations and self-consistent field theory for studying block copolymer directed self-assembly. In: Directed Self-assembly of Block Co-polymers for Nano-manufacturing, pp. 67–95. Elsevier (2015)

    Google Scholar 

  40. Ginzburg, V.V.: Nanoparticle/Polymer Blends: Theory and Modeling. In: Encyclopedia of Polymer Blends, pp. 233–268. Wiley-VCH Verlag GmbH & Co. KGaA (2010)

    Google Scholar 

  41. Ginzburg, V.V.: Polymer-grafted nanoparticles in polymer melts: Modeling using the combined SCFT–DFT approach. Macromolecules 46, 9798–9805 (2013)

    Article  Google Scholar 

  42. Ginzburg, V.V.: Modeling the morphology and phase behavior of one-component polymer-grafted nanoparticle systems. Macromolecules 50, 9445–9455 (2017)

    Article  Google Scholar 

  43. Ginzburg, V.V., Balazs, A.C.: Calculating phase diagrams of polymer − platelet mixtures using density functional theory: implications for polymer/clay composites. Macromolecules 32, 5681–5688 (1999)

    Article  Google Scholar 

  44. Ginzburg, V.V., Gendelman, O.V., Manevitch, L.I.: Simple “kink” model of melt intercalation in polymer-clay nanocomposites. Phys. Rev. Lett. 86, 5073–5075 (2001)

    Article  Google Scholar 

  45. Ginzburg, V.V., Singh, C., Balazs, A.C.: Theoretical phase diagrams of polymer/clay composites: The role of grafted organic modifiers. Macromolecules 33, 1089–1099 (2000)

    Article  Google Scholar 

  46. Glaser, M.A., Grason, G.M., Kamien, R.D., Košmrlj, A., Santangelo, C.D., Ziherl, P.: Soft spheres make more mesophases. EPL (Europhys. Lett.) 78, 46004 (2007)

    Article  Google Scholar 

  47. Glotzer, S.C., Anderson, J.A.: Nanoparticle assembly: made to order. Nat. Mater. 9, 885–887 (2010)

    Article  Google Scholar 

  48. Glotzer, S.C., Horsch, M.A., Iacovella, C.R., Zhang, Z.L., Chan, E.R., Zhang, X.: Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Curr. Opin. Colloid Interface Sci. 10, 287–295 (2005)

    Article  Google Scholar 

  49. Glotzer, S.C., Solomon, M.J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007)

    Article  Google Scholar 

  50. Goel, V., Pietrasik, J., Dong, H.C., Sharma, J., Matyjaszewski, K., Krishnamoorti, R.: Structure of polymer tethered highly grafted nanoparticles. Macromolecules 44, 8129–8135 (2011)

    Article  Google Scholar 

  51. Green, P.F., Oh, H., Akcora, P., Kumar, S.K.: Structure and dynamics of polymer nanocomposites involving chain-grafted spherical nanoparticles. In: Dynamics of Soft Matter, pp 349–366. Springer (2012)

    Google Scholar 

  52. Hansen, J.-P.: Phase transition of the Lennard-Jones system II. High-temperature limit. Phys. Rev. A 2, 221 (1970)

    Article  Google Scholar 

  53. Hansen J.-P., McDonald, I.R.: Theory of Simple Liquids. Elsevier (1990)

    Google Scholar 

  54. Hansen, J.-P., Verlet, L.: Phase transitions of the Lennard-Jones system. Phys. Rev. 184, 151 (1969)

    Article  Google Scholar 

  55. Harton, S.E., Kumar, S.K.: Mean-field theoretical analysis of brush-coated nanoparticle dispersion in polymer matrices. J. Polym. Sci., Part B: Polym. Phys. 46, 351–358 (2008)

    Article  Google Scholar 

  56. Heinz, H., Patnaik, S.S., Pandey, R.B., Farmer, B.L.: Modeling of Polymer Matrix Nanocomposites. In: Modeling and Simulation in Polymers, pp. 37–92 Wiley (2010)

    Google Scholar 

  57. Heinz, H., Vaia, R., Farmer, B.: Interaction energy and surface reconstruction between sheets of layered silicates. J. Chem. Phys. 124, 224713 (2006)

    Article  Google Scholar 

  58. Heinz, H., Vaia, R., Krishnamoorti, R., Farmer, B.: Self-assembly of alkylammonium chains on montmorillonite: effect of chain length, head group structure, and cation exchange capacity. Chem. Mater. 19, 59–68 (2007)

    Article  Google Scholar 

  59. Heinz, H., Vaia, R.A., Farmer, B.L.: Relation between packing density and thermal transitions of alkyl chains on layered silicate and metal surfaces. Langmuir 24, 3727–3733 (2008)

    Article  Google Scholar 

  60. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  Google Scholar 

  61. Hooper, J.B., Schweizer, K.S.: Contact aggregation, bridging, and steric stabilization in dense polymer-particle mixtures. Macromolecules 38, 8858–8869 (2005)

    Article  Google Scholar 

  62. Hore, M.J., Laradji, M.: Prospects of nanorods as an emulsifying agent of immiscible blends. J. Chem. Phys. 128, 054901 (2008)

    Article  Google Scholar 

  63. Hore, M.J.A., Composto, R.J.: Functional polymer nanocomposites enhanced by nanorods. Macromolecules 47, 875–887 (2014)

    Article  Google Scholar 

  64. Huggins ML (1941) Solutions of long chain compounds. J. Chem. Phys. 9, 440–440 (1941)

    Google Scholar 

  65. Huh, J., Balazs, A.C.: Behavior of confined telechelic chains under shear. J. Chem. Phys. 113, 2025–2031 (2000)

    Article  Google Scholar 

  66. Huh, J., Ginzburg, V.V., Balazs, A.C.: Thermodynamic behavior of particle/Diblock copolymer mixtures: simulation and theory. Macromolecules 33, 8085–8096 (2000)

    Article  Google Scholar 

  67. Jain, S., Dominik, A., Chapman, W.G.: Modified interfacial statistical associating fluid theory: a perturbation density functional theory for inhomogeneous complex fluids. J. Chem. Phys. 127, 244904 (2007)

    Article  Google Scholar 

  68. Jayaraman, A.: Polymer grafted nanoparticles: Effect of chemical and physical heterogeneity in polymer grafts on particle assembly and dispersion. J. Polym. Sci., Part B: Polym. Phys. 51, 524–534 (2013)

    Article  Google Scholar 

  69. Jog, P.K., Ginzburg, V.V., Srivastava, R., Weinhold, J.D., Jain, S., Chapman, W.G.: Application of mesoscale field-based models to predict stability of particle dispersions in polymer melts. In: Advances in Chemical Engineering, vol. 39, pp. 131–164. Elsevier (2010)

    Google Scholar 

  70. Karatrantos, A., Clarke, N., Kröger, M.: Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale: a review. Polym. Rev. 56, 385–428 (2016)

    Article  Google Scholar 

  71. Khani, S., Jamali, S., Boromand, A., Hore, M.J., Maia, J.: Polymer-mediated nanorod self-assembly predicted by dissipative particle dynamics simulations. Soft Mater. 11, 6881–6892 (2015)

    Article  Google Scholar 

  72. Kim, J.U., Matsen, M.W.: Interaction between polymer-grafted particles. Macromolecules 41, 4435–4443 (2008)

    Article  Google Scholar 

  73. Kim, J.U., Matsen, M.W.: Positioning Janus nanoparticles in block copolymer scaffolds. Phys. Rev. Lett. 102, 078303 (2009)

    Article  Google Scholar 

  74. Koerner, H., Drummy, L., Benicewicz, B., Yu, L., Vaia, R.: Nonisotropic Self-Organization of Single-Component Hairy Nanoparticle Assemblies. ACS Macro Lett. 2, 670–676 (2013)

    Article  Google Scholar 

  75. Koerner, H., et al.: Physical aging and glass transition of hairy nanoparticle assemblies. J. Polym. Sci., Part B: Polym. Phys. 54, 319–330 (2016)

    Article  Google Scholar 

  76. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Mechanical-properties of Nylon 6-clay hybrid. J. Mater. Res. 8, 1185–1189 (1993)

    Article  Google Scholar 

  77. Koski, J., Chao, H., Riggleman, R.A.: Predicting the structure and interfacial activity of diblock brush, mixed brush, and Janus-grafted nanoparticles. Chem. Commun. 51, 5440–5443 (2015)

    Google Scholar 

  78. Koski, J., Chao, H., Riggleman, R.A.: Field theoretic simulations of polymer nanocomposites J. Chem. Phys. 139, 244911 (2013)

    Google Scholar 

  79. Krishnamoorti, R., Vaia, R.A., Giannelis, E.P.: Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 8, 1728–1734 (1996)

    Article  Google Scholar 

  80. Kumar, S.K., Benicewicz, B.C., Vaia, R.A., Winey, K.I.: 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50, 714–731 (2017)

    Article  Google Scholar 

  81. Kumar, S.K., Ganesan, V., Riggleman, R.A.: Perspective: outstanding theoretical questions in polymer-nanoparticle hybrids. J. Chem. Phys. 147, 020901 (2017)

    Article  Google Scholar 

  82. Kumar, S.K., Jouault, N., Benicewicz, B., Neely, T.: Nanocomposites with polymer grafted nanoparticles. Macromolecules 46, 3199–3214 (2013)

    Article  Google Scholar 

  83. Kuznetsov, D.V., Balazs, A.C.: Phase behavior of end-functionalized polymers confined between two surfaces. J. Chem. Phys. 113, 2479–2483 (2000)

    Article  Google Scholar 

  84. Kuznetsov, D.V., Balazs, A.C.: Scaling theory for end-functionalized polymers confined between two surfaces: Predictions for fabricating polymer/clay nanocomposites. J. Chem. Phys. 112, 4365–4375 (2000)

    Article  Google Scholar 

  85. Lee, J.Y., Balazs, A.C., Thompson, R.B., Hill, R.M.: Self-assembly of amphiphilic nanoparticle-coil “tadpole” macromolecules. Macromolecules 37, 3536–3539 (2004)

    Article  Google Scholar 

  86. Lee, J.Y., Baljon, A.R.C., Loring, R.F.: Spontaneous swelling of layered nanostructures by a polymer melt. J. Chem. Phys. 111, 9754–9760 (1999)

    Article  Google Scholar 

  87. Lee, J.Y., Baljon, A.R.C., Loring, R.F., Panagiotopoulos, A.Z.: Simulation of polymer melt intercalation in layered nanocomposites. J. Chem. Phys. 109, 10321–10330 (1998)

    Article  Google Scholar 

  88. Lee, J.Y., Baljon, A.R.C., Sogah, D.Y., Loring, R.F.: Molecular dynamics study of the intercalation of diblock copolymers into layered silicates. J. Chem. Phys. 112, 9112–9119 (2000)

    Article  Google Scholar 

  89. Lee, J.Y., Buxton, G.A., Balazs, A.C.: Using nanoparticles to create self-healing composites. J. Chem. Phys. 121, 5531–5540 (2004)

    Article  Google Scholar 

  90. Lee, J.Y., Shou, Z., Balazs, A.C.: Modeling the self-assembly of copolymer-nanoparticle mixtures confined between solid surfaces. Phys. Rev. Lett. 91, 136103 (2003)

    Google Scholar 

  91. Lee, J.Y., Shou, Z.Y., Balazs, A.C.: Predicting the morphologies of confined copolymer/nanoparticle mixtures. Macromolecules 36, 7730–7739 (2003)

    Article  Google Scholar 

  92. Lee, J.Y., Thompson, R.B., Jasnow, D., Balazs, A.C.: Effect of nanoscopic particles on the mesophase structure of diblock copolymers. Macromolecules 35, 4855–4858 (2002)

    Article  Google Scholar 

  93. Lee, J.Y., Thompson, R.B., Jasnow, D., Balazs, A.C.: Entropically driven formation of hierarchically ordered nanocomposites. Phys. Rev. Lett. 89, 155503 (2003)

    Google Scholar 

  94. Lee, J.Y., Thompson, R.B., Jasnow, D., Balazs, A.C.: Self-assembly of a binary mixture of particles and diblock copolymers. Faraday Discuss. 123, 121–131 (2003)

    Article  Google Scholar 

  95. Lyatskaya, Y., Balazs, A.C.: Modeling the phase behavior of polymer-clay composites. Macromolecules 31, 6676–6680 (1998)

    Article  Google Scholar 

  96. Mackay, M.E., et al.: General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006)

    Article  Google Scholar 

  97. Marshall, B.D., Chapman, W.G.: Thermodynamic perturbation theory for associating molecules. Adv. Chem. Phys. 160, 1 (2016)

    Google Scholar 

  98. Marson, R.L., Nguyen, T.D., Glotzer, S.C.: Rational design of nanomaterials from assembly and reconfigurability of polymer-tethered nanoparticles. MRS Commun. 5, 397–406 (2015)

    Article  Google Scholar 

  99. Martin, T.B., Dodd, P.M., Jayaraman, A.: Polydispersity for tuning the potential of mean force between polymer grafted nanoparticles in a polymer matrix. Phys. Rev. Lett. 110, 018301 (2013)

    Article  Google Scholar 

  100. Martin, T.B., Jayaraman, A.: Identifying the ideal characteristics of the grafted polymer chain length distribution for maximizing dispersion of polymer grafted nanoparticles in a polymer matrix. Macromolecules 46, 9144–9150 (2013)

    Article  Google Scholar 

  101. Martin, T.B., Jayaraman, A.: Polydisperse homopolymer grafts stabilize dispersions of nanoparticles in a chemically identical homopolymer matrix: an integrated theory and simulation study. Soft Matter 9, 6876–6889 (2013)

    Article  Google Scholar 

  102. Martin, T.B., Jayaraman, A.: Effect of matrix bidispersity on the morphology of polymer-grafted nanoparticle-filled polymer nanocomposites. J. Polym. Sci. Pol. Phys. 52, 1661–1668 (2014)

    Article  Google Scholar 

  103. Martin, T.B., Jayaraman, A.: Effect of matrix bidispersity on the morphology of polymer-grafted nanoparticle-filled polymer nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 52, 1661–1668 (2014)

    Article  Google Scholar 

  104. Martin, T.B., Jayaraman, A.: Using Theory and Simulations To Calculate Effective Interactions in Polymer Nanocomposites with Polymer-Grafted Nanoparticles. Macromolecules 49, 9684–9692 (2016)

    Article  Google Scholar 

  105. Matsen, M., Thompson, R.: Particle distributions in a block copolymer nanocomposite. Macromolecules 41, 1853–1860 (2008)

    Article  Google Scholar 

  106. Mazo, M., Manevitch, L., Balabaev, N., Berlin, A., Gusarova, E., Rutledge, G.: temperature dependence of elastic properties of a pyrophyllite plate by molecular dynamics simulation. J. Phys. Chem. B 112, 2964–2969 (2008)

    Article  Google Scholar 

  107. Mazo, M.A., Manevitch, L.I., Gusarova, E.B., Berlin, A.A., Balabaev, N.K., Rutledge, G.C.: Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. II Hydrated montmorillonite crystal. J. Phys. Chem. C 112, 17056–17062 (2008)

    Article  Google Scholar 

  108. Mazo, M.A., Manevitch, L.I., Gusarova, E.B., Shamaev, M.Y., Berlin, A.A., Balabaev, N.K., Rutledge, G.C.: Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. 1 Isolated clay nanoplate. J. Phys. Chem. B 112, 2964–2969 (2008)

    Article  Google Scholar 

  109. Mazo, M.A., Manevitch, L.I., Gusarova, E.B., Shamaev, M.Y., Berlin, A.A., Balabaev, N.K., Rutledge, G.C.: Molecular dynamics simulation of thermomechanical properties of Montmorillonite crystal. 3 Montmorillonite crystals with PEO oligomer intercalates. J. Phys. Chem. B 112, 3597–3604 (2008)

    Article  Google Scholar 

  110. McGarrity, E., Frischknecht, A., Frink, L., Mackay, M.: Surface-induced first-order transition in athermal polymer-nanoparticle blends. Phys. Rev. Lett. 99, 238302 (2007)

    Article  Google Scholar 

  111. McGarrity, E., Frischknecht, A., Mackay, M.: Phase behavior of polymer/nanoparticle blends near a substrate. J. Chem. Phys. 128, 154904 (2008)

    Article  Google Scholar 

  112. Modica, K.J., Martin, T.B., Jayaraman, A.: Effect of polymer architecture on the structure and interactions of polymer grafted particles: theory and simulations. Macromolecules 50, 4854–4866 (2017)

    Article  Google Scholar 

  113. Moffitt, M.G.: Self-assembly of polymer brush-functionalized inorganic nanoparticles: from hairy balls to smart molecular mimics. J. Phys. Chem. Lett. 4, 3654–3666 (2013)

    Article  Google Scholar 

  114. Morita, T.: Theory of Classical Fluids: Hyper-Netted Chain Approximation, Formulation for a One-Component System. Progr. Theoret. Phys. 20, 920–938 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  115. Müller-Plathe, F.: Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3, 754–769 (2002)

    Article  Google Scholar 

  116. Nielsen, S.O., Lopez, C.F., Srinivas, G., Klein, M.L.: Coarse grain models and the computer simulation of soft materials. J. Phys.: Condens. Matter 16, R481 (2004)

    Google Scholar 

  117. Okada, A., Usuki, A., Kurauchi, T., Kamigaito, O.: Polymer-Clay hybrids. ACS Sym. Ser. 585, 55–65 (1995)

    Article  Google Scholar 

  118. Ornstein, L.S., Zernike, F.: Integral equation in liquid state theory. In: Proc. Acad. Sci. Amsterdam, p. 793 (1914)

    Google Scholar 

  119. Pandey, R.B., Anderson, K., Farmer, B.: Exfoliation of stacked sheets: effects of temperature, platelet size, and quality of solvent by a Monte Carlo simulation. J. Polym. Sci., Part B: Polym. Phys. 44, 3580–3589 (2006)

    Article  Google Scholar 

  120. Pandey, R.B., Farmer, B.: Exfoliation of a stack of platelets and intercalation of polymer chains: effects of molecular weight, entanglement, and interaction with the polymer matrix. J. Polym. Sci., Part B: Polym. Phys. 46, 2696–2710 (2008)

    Article  Google Scholar 

  121. Peng, G., Qiu, F., Ginzburg, V.V., Jasnow, D., Balazs, A.C.: Forming supramolecular networks from nanoscale rods in binary phase-separating mixtures. Science 288, 1802–1804 (2000)

    Article  Google Scholar 

  122. Percus, J.K., Yevick, G.J.: Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  123. Phillips, C.L., Iacovella, C.R., Glotzer, S.C.: Stability of the double gyroid phase to nanoparticle polydispersity in polymer-tethered nanosphere systems. Soft Mater. 6, 1693–1703 (2010)

    Article  Google Scholar 

  124. Pryamitsyn, V., Ganesan, V.: Strong segregation theory of block copolymer-nanoparticle composites. Macromolecules 39, 8499–8510 (2006)

    Article  Google Scholar 

  125. Pryamtisyn, V., Ganesan, V., Panagiotopoulos, A.Z., Liu, H., Kumar, S.K.: Modeling the anisotropic self-assembly of spherical polymer-grafted nanoparticles. J. Chem. Phys. 131, 221102 (2009)

    Google Scholar 

  126. Ramakrishnan, T., Yussouff, M.: First-principles order-parameter theory of freezing. Phys. Rev. B 19, 2775 (1979)

    Article  Google Scholar 

  127. Rasin, B., Chao, H.K., Jiang, G.Q., Wang, D.L., Riggleman, R.A., Composto, R.J.: Dispersion and alignment of nanorods in cylindrical block copolymer thin films. Soft Matter. 12, 2177–2185 (2016)

    Article  Google Scholar 

  128. Reister, E., Fredrickson, G.H.: Nanoparticles in a diblock copolymer background: The potential of mean force. Macromolecules 37, 4718–4730 (2004)

    Article  Google Scholar 

  129. Reister, E., Fredrickson, G.H.: Phase behavior of a blend of polymer-tethered nanoparticles with diblock copolymers. J. Chem. Phys. 123, 214903 (2005)

    Article  Google Scholar 

  130. Rintoul, M., Torquato, S.: Metastability and crystallization in hard-sphere systems. Phys. Rev. Lett. 77, 4198 (1996)

    Article  Google Scholar 

  131. Rosenfeld, Y., Tarazona, P.: Density functional theory and the asymptotic high density expansion of the free energy of classical solids and fluids. Mol. Phys. 95, 141–150 (1998)

    Article  Google Scholar 

  132. Schmid, F.: Self-consistent-field theories for complex fluids. J Phys-Condens Mat 10, 8105–8138 (1998)

    Article  Google Scholar 

  133. Schmid, F., Muller, M.: Quantitative comparison of self-consistent-field theories for polymers near interfaces with Monte-Carlo simulations. Macromolecules 28, 8639–8645 (1995)

    Article  Google Scholar 

  134. Schweizer, K., Curro, J.: PRISM theory of the structure, thermodynamics, and phase transitions of polymer liquids and alloys. In: Atomistic Modeling of Physical Properties, pp 319–377. Springer (1994)

    Google Scholar 

  135. Schweizer, K.S., Curro, J.G.: Integral-equation theory of the structure of polymer melts. Phys. Rev. Lett. 58, 246 (1987)

    Article  Google Scholar 

  136. Schweizer, K.S., Curro, J.G.: Integral equation theories of the structure, thermodynamics, and phase transitions of polymer fluids. Adv. Chem. Phys. 98:1–142 (1997)

    Google Scholar 

  137. Scocchi, G., Posocco, P., Danani, A., Pricl, S., Fermeglia, M.: To the nanoscale, and beyond!: multiscale molecular modeling of polymer-clay nanocomposites. Fluid Phase Equilib. 261, 366–374 (2007)

    Article  Google Scholar 

  138. Scocchi, G., Posocco, P., Fermeglia, M., Pricl, S.: Polymer − clay nanocomposites: a multiscale molecular modeling approach. J. Phys. Chem. B 111, 2143–2151 (2007)

    Article  Google Scholar 

  139. Scocchi, G., Posocco, P., Handgraaf, J.W., Fraaije, J.G., Fermeglia, M., Pricl, S.: A complete multiscale modelling approach for polymer–clay nanocomposites Chemistry-A. Eur. J. 15, 7586–7592 (2009)

    Article  Google Scholar 

  140. Sides, S.W., Kim, B.J., Kramer, E.J., Fredrickson, G.H.: Hybrid particle-field simulations of polymer nanocomposites. Phys. Rev. Lett. 96, 250601 (2006)

    Article  Google Scholar 

  141. Sinsawat, A., Anderson, K.L., Vaia, R.A., Farmer, B.: Influence of polymer matrix composition and architecture on polymer nanocomposite formation: Coarse-grained molecular dynamics simulation. J. Polym. Sci., Part B: Polym. Phys. 41, 3272–3284 (2003)

    Article  Google Scholar 

  142. Smith, G.D., Bedrov, D.: Dispersing nanoparticles in a polymer matrix: are long, dense polymer tethers really necessary? Langmuir 25, 11239–11243 (2009)

    Article  Google Scholar 

  143. Smith, J.S., Bedrov, D., Smith, G.D.: A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Composites Science and Technology 63, 1599–1605 (2003)

    Article  Google Scholar 

  144. Su, H., et al.: Sequential Triple “Click” approach toward polyhedral oligomeric silsesquioxane-based multiheaded and multitailed giant surfactants. ACS Macro Letters 2, 645–650 (2013)

    Article  Google Scholar 

  145. Suter, J.L., Coveney, P.V.: Computer simulation study of the materials properties of intercalated and exfoliated poly (ethylene) glycol clay nanocomposites. Soft Matter. 5, 2239–2251 (2009)

    Article  Google Scholar 

  146. Suter, J.L., Groen, D., Coveney, P.V.: Mechanism of exfoliation and prediction of materials properties of clay-polymer nanocomposites from multiscale modeling. Nano Lett. 15, 8108–8113 (2015)

    Article  Google Scholar 

  147. Tarazona, P.: Free-energy density functional for hard spheres. Phys. Rev. A 31, 2672 (1985)

    Article  Google Scholar 

  148. Thompson, R.B., Ginzburg, V.V., Matsen, M.W., Balazs, A.C.: Predicting the mesophases of copolymer-nanoparticle composites. Science 292, 2469–2472 (2001)

    Article  Google Scholar 

  149. Thompson, R.B., Ginzburg, V.V., Matsen, M.W., Balazs, A.C.: Block copolymer-directed assembly of nanoparticles: Forming mesoscopically ordered hybrid materials. Macromolecules 35, 1060–1071 (2002)

    Article  Google Scholar 

  150. Thompson, R.B., Lee, J.Y., Jasnow, D., Balazs, A.C.: Binary hard sphere mixtures in block copolymer melts Phys. Rev. E 66, 031801 (2002)

    Google Scholar 

  151. Tripathi, S., Chapman, W.G.: Microstructure and thermodynamics of inhomogeneous polymer blends and solutions. Phys. Rev. Lett. 94, 087801 (2005)

    Article  Google Scholar 

  152. Tripathi, S., Chapman, W.G.: Microstructure of inhomogeneous polyatomic mixtures from a density functional formalism for atomic mixtures. J. Chem. Phys. 122, 094506 (2005)

    Article  Google Scholar 

  153. Trombly, D.M., Ganesan, V.: Curvature effects upon interactions of polymer-grafted nanoparticles in chemically identical polymer matrices. J. Chem. Phys. 133, 154904 (2010)

    Article  Google Scholar 

  154. Tyagi, S., Lee, J.Y., Buxton, G.A., Balazs, A.C.: Using nanocomposite coatings to heal surface defects. Macromolecules 37, 9160–9168 (2004)

    Article  Google Scholar 

  155. Vaia, R.A., Giannelis, E.P.: Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30, 7990–7999 (1997)

    Article  Google Scholar 

  156. Vaia, R.A., Giannelis, E.P.: Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules 30, 8000–8009 (1997)

    Article  Google Scholar 

  157. Vaia, R.A., Jandt, K.D., Kramer, E.J., Giannelis, E.P.: Microstructural evolution of melt intercalated polymer-organically modified layered silicates nanocomposites. Chem. Mater. 8, 2628–2635 (1996)

    Article  Google Scholar 

  158. Vaia, R.A., Teukolsky, R.K., Giannelis, E.P.: Interlayer structure and molecular environment of alkylammonium layered silicates. Chem. Mater. 6, 1017–1022 (1994)

    Article  Google Scholar 

  159. van Leeuwen, J.M.J., Groeneveld, J., de Boer, J.: New method for the calculation of the pair correlation function. Physica 25, 792–808 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  160. Wertheim, M.: Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 35, 19–34 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  161. Wertheim, M.: Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J. Stat. Phys. 35, 35–47 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  162. Wu, J.: Density functional theory for chemical engineering: From capillarity to soft materials. AIChE J. 52, 1169–1193 (2006)

    Article  Google Scholar 

  163. Yan, L.-T., Maresov, E., Buxton, G.A., Balazs, A.C.: Self-assembly of mixtures of nanorods in binary, phase-separating blends. Soft Matter 7, 595–607 (2011)

    Article  Google Scholar 

  164. Yan, L.-T., Xie, X.-M.: Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: Structures, properties and external field effects. Prog. Polym. Sci. 38, 369–405 (2013)

    Article  Google Scholar 

  165. Yu, X., et al.: Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering. Proc. Natl. Acad. Sci. 110, 10078–10083 (2013)

    Article  Google Scholar 

  166. Yue, K., et al.: Sequential “click” approach to polyhedral oligomeric silsesquioxane-based shape amphiphiles. Macromolecules 45, 8126–8134 (2012)

    Article  Google Scholar 

  167. Zartman, G.D., Liu, H., Akdim, B., Pachter, R., Heinz, H.: Nanoscale tensile shear, and failure properties of layered silicates as a function of cation density and stress. J. Phys. Chem. C 114, 1763–1772 (2010)

    Article  Google Scholar 

  168. Zeng, Q., Yu, A., Lu, G.: Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33, 191–269 (2008)

    Article  Google Scholar 

  169. Zhang, W.-B., et al.: Molecular nanoparticles are unique elements for macromolecular science: From “nanoatoms” to giant molecules. Macromolecules 47, 1221–1239 (2014)

    Article  Google Scholar 

  170. Zhang, Z.L., Horsch, M.A., Lamm, M.H., Glotzer, S.C.: Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3, 1341–1346 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

I am greatly indebted to Drs. Robbyn Prange and Cathy Tway for critical reading of this manuscript and many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy V. Ginzburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ginzburg, V.V. (2019). Recent Developments in Theory and Modeling of Polymer-Based Nanocomposites. In: Andrianov, I., Manevich, A., Mikhlin, Y., Gendelman, O. (eds) Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-92234-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92234-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92233-1

  • Online ISBN: 978-3-319-92234-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics