A MAS Model for Reaching Goals in Critical Systems

  • Flora AmatoEmail author
  • Giovanni Cozzolino
  • Antonino Mazzeo
  • Francesco Moscato
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 98)


The exploitation of Cloud infrastructure in Big Data management is appealing because of costs reductions and potentiality of storage, network and computing resources. The Cloud can consistently reduce the cost of analysis of data from different sources, opening analytics to big storages in a multi-cloud environment. Anyway, creating and executing this kind of service is very complex since different resources have to be provisioned and coordinated depending on users’ needs. Orchestration is a solution to this problem, but it requires proper languages and methodologies for automatic composition and execution. In this work we propose a methodology for composition of services used for analyses of different Big Data sources: in particular an Orchestration language is reported able to describe composite services and resources in a multi-cloud environment.


  1. 1.
    White, T.: Hadoop: The definitive guide. O’Reilly Media, Inc., Sebastopol (2012)Google Scholar
  2. 2.
    VV.AA. Us government cloud computing technology roadmap release 1.0 (draft). In: Special Publication 500-293, vol. 2, pp. 1–85. NIST (2011)Google Scholar
  3. 3.
    Lorenzo, G.D., Mazzocca, N., Moscato, F., Vittorini, V.: Towards semantics driven generation of executable web services compositions. Int. J. Softw. JSW 2(5), 1–15 (2007)Google Scholar
  4. 4.
    Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Serv. 1(1), 1–30 (2005)CrossRefGoogle Scholar
  5. 5.
    Traverso, P., Pistore, M.: Automated composition of semantic web services into executable processes. In: The Semantic Web-ISWC 2004, pp. 380–394. Springer (2004)CrossRefGoogle Scholar
  6. 6.
    Amato, F., Moscato, F.: Pattern-based orchestration and automatic verification of composite cloud services. Comput. Electr. Eng. 56, 842–853 (2016)CrossRefGoogle Scholar
  7. 7.
    Amato, F., Barbareschi, M., Casola, V., Mazzeo, A., Romano, S: Towards automatic generation of hardware classifiers. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, PART 2, vol. 8286, pp. 125–132 (2013)CrossRefGoogle Scholar
  8. 8.
    Moscato, F., Martino, B.D., Aversa, R.: Enabling model driven engineering of cloud services by using mosaic ontology. Scalable Comput. Pract. Exp. 13(1), 29–44 (2012)Google Scholar
  9. 9.
    Moscato, F., Aversa, R., Martino, B.D., Fortis, T.-F., Munteanu, V.I.: An analysis of mosaic ontology for cloud resources annotation. In: IEEE Proceedings of the FedCSIS 2011 Conference, pp. 973–980 (2011)Google Scholar
  10. 10.
    Della Vecchia, G., Gallo, L., Esposito, M., Coronato, A.: An infrastructure for smart hospitals. Multimed. Tools Appl. 59(1), 341–362 (2012)CrossRefGoogle Scholar
  11. 11.
    Essmaeel, K., Gallo, L., Damiani, E., De Pietro, G., Dipanda, A.: Comparative evaluation of methods for filtering kinect depth data. Multimed. Tools Appl. 74(17), 7331–7354 (2015)CrossRefGoogle Scholar
  12. 12.
    Brancati, N., Caggianese, G., Frucci, M., Gallo, L., Neroni, P.: Touchless target selection techniques for wearable augmented reality systems. In: Intelligent Interactive Multimedia Systems and Services, pp. 1–9. Springer (2015)Google Scholar
  13. 13.
    Moscato, F.: Model driven engineering and verification of composite cloud services in MetaMORP(h)OSY. In: Proceedings of 6th, International Conference on Intelligent Networking and Collaborative Systems INCoS 2014. IEEE (2014)Google Scholar
  14. 14.
    Moscato, F., Amato, F.: Thermal-aware verification and monitoring of service providers in MetaMORP(h)OSY. In: Proceedings of 6th, International Conference on Intelligent Networking and Collaborative Systems INCoS 2014. IEEE (2014)Google Scholar
  15. 15.
    Ranjan, R., Benatallah, B., Dustdar, S., Papazoglou, M.P.: Cloud resource orchestration programming: overview, issues, and directions. IEEE Internet Comput. 19(5), 46–56 (2015)CrossRefGoogle Scholar
  16. 16.
    Liu, C., Loo, B.T., Mao, Y.: Declarative automated cloud resource orchestration. In: Proceedings of the 2nd ACM Symposium on Cloud Computing, p. 26. ACM (2011)Google Scholar
  17. 17.
    Kumar, R., Gupta, N., Charu, S., Jain, K., Jangir, S.K.: Open source solution for cloud computing platform using openstack. Int. J. Comput. Sci. Mob. Comput. 3(5), 89–98 (2014)Google Scholar
  18. 18.
    Plotkin, G.D.: A structural approach to operational semantics (1981)Google Scholar
  19. 19.
    Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electron. Notes Theor. Comput. Sci. 152, 125–142 (2006). Proceedings of the International Workshop on Graph and Model Transformation (GraMoT 2005), Graph and Model Transformation 2005. Scholar
  20. 20.
    Moscato, F., Aversa, R., Amato, A.: Describing cloud use case in MetaMORP(h) OSY. In: IEEE Proceedings of the CISIS 2012 Conference, pp. 793–798 (2012)Google Scholar
  21. 21.
    Barolli, L., Chen, X., Xhafa, F.: Advances on cloud services and cloud computing. Concurr. Comput. 27(8), 1985–1987 (2015)CrossRefGoogle Scholar
  22. 22.
    Pop, F., Dobre, C., Cristea, V., Bessis, N., Xhafa, F., Barolli, L.: Reputation-guided evolutionary scheduling algorithm for independent tasks in inter-clouds environments. Int. J. Web Grid Serv. 11(1), 4–20 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Flora Amato
    • 1
    Email author
  • Giovanni Cozzolino
    • 1
  • Antonino Mazzeo
    • 1
  • Francesco Moscato
    • 2
  1. 1.Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione DIETIUniversity of Naples “Federico II”NaplesItaly
  2. 2.Dipartimento di Scienze Politiche. DiSciPolUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations