Advertisement

A Collaborative Telemedicine Platform Focusing on Paranasal Sinus Segmentation

  • Yinuo LiEmail author
  • Yonghua Li
  • Zhuofu Deng
  • Zhiliang Zhu
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 98)

Abstract

Telemedicine is an important diagnostic auxiliary tool. This field has recently begun a period of explosive growth. In this paper, we combine mobile devices and image processing algorithms to develop a real-time collaborative image processing telemedicine platform for mobile devices. This C/S mode platform is based on C++, which is mainly implemented by VTK and ITK. In addition to implementing image transmission, 3D visualization and remote rendering, we focus on paranasal sinus CT and adopt automatic medical image segmentation function using the DRLSE algorithm. Besides, collaboration function ensures that users can process images in real time using mobile devices, which benefits communication between medical experts. Through testing, the platform is proved to be able to maintain stable bandwidth demand even in crowded network. According to the current research, this is the first platform to combine paranasal sinus CT image analysis with telemedicine. Therefore, our platform outperforms conventional teleradiology platform in functional completeness. Our platform helps radiologists and medical specialists to make correct diagnoses.

Keywords

Telemedicine Collaboration Paranasal sinus CT Image segmentation 

References

  1. 1.
    Perednia, D.A., Brown, N.A.: Teledermatology: one application of telemedicine. Bull. Med. Libr. Assoc. 83(1), 42–47 (1995)Google Scholar
  2. 2.
    Bernardes, P., et al.: KAMEDIN - teleconferencing and automatic image analysis for medical applications. In: Teixeira, J.C., Rix, J. (eds.) Modelling and Graphics in Science and Technology. Beiträge zur Graphischen Datenverarbeitung. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Moffitt, M.E., Richli, W.R., Carrasco, C.H., et al.: MDA-image: an environment of networked desktop computers for teleradiology/pathology. J. Med. Syst. 15, 111–115 (1991)CrossRefGoogle Scholar
  4. 4.
    Puech, P.A., Boussel, L., Belfkih, S., et al.: DicomWorks software for reviewing DICOM studies and promoting low-cost teleradiology. J. Digit Imaging 20, 122 (2007)CrossRefGoogle Scholar
  5. 5.
    Mohamed, A.S.A.: The use of teleradiology system linking a regional center of radiology to its district hospitals and clinics. In: ELemke, H.U., Inamura, K., Jaffe, C.C., Felix, R. (eds.) Computer Assisted Radiology/Computergestützte Radiologie, pp. 106–111. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Carson, G.C., Fath, S.J., Van Meter, T.A., et al.: IMAGEnet: a wide area teleradiology network. In: Emergency Radiology. LNCS, vol. 1, pp. 32–3. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Ivetic, D., Dragan, D.: Medical image on the go! J. Med. Syst. 35(4), 499–516 (2011)CrossRefGoogle Scholar
  8. 8.
    Park, J.B., Choi, H.J., Lee, J.H., Kang, B.S.: An assessment of the iPad 2 as a CT teleradiology tool using brain CT with subtle intracranial hemorrhage under conventional illumination. J. Digit. Imaging 26(4), 683–690 (2013)CrossRefGoogle Scholar
  9. 9.
    Pianykh, O.S.: DICOM and teleradiology digital imaging and communications in medicine (DICOM): a practical introduction and survival guide. J. Digit. Imaging, 281–317 (2012)Google Scholar
  10. 10.
    Zennaro, F., Grosso, D., Fascetta, R., Marini, M., Odoni, L., Di Carlo, V., Lazzerini, M., et al.: Teleradiology for remote consultation using iPad improves the use of health system human resources for paediatric fractures: prospective controlled study in a tertiary care hospital in Italy. BMC Health Serv. Res. 14(1), 327 (2014)CrossRefGoogle Scholar
  11. 11.
    Drnasin, I., Gogic, G., Tonkovic, S.: Interactive teleradiology. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering, Munich, Germany. IFMBE Proceedings, vol. 25/5, pp. 290–294 . Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Dreyer, K.J., Thrall, J.H., Hirschorn, D.S., Mehta, A.: PACS: a guide to the digital revolution. J. Med. Imaging Radiat. Oncol. 48, 103 (2004)Google Scholar
  13. 13.
    Gortzis, L.G.: Clinical teleradiology: collaboration over the web during interventional radiology procedures. In: Kumar, S., Krupinski, E.A. (eds.) Teleradiology. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Schmid, J., Nijdam, N., Han, S., Kim, J., Magnenat-Thalmann, N.: Interactive segmentation of volumetric medical images for collaborative telemedicine. In: Magnenat-Thalmann, N. (ed.) 3DPH 2009. LNCS, vol. 5903, pp. 13–24. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Rosenfeld, R.M., Piccirillo, J.F., Chandrasekhar, S.S., Brook, I., Ashok Kumar, K., Kramper, M., Orlandi, R.R., Palmer, J.N., Patel, Z.M., Peters, A., Walsh, S.A., Corrigan, M.D.: Clinical practice guideline (update): adult sinusitis executive summary. Otolaryngol. Head Neck Surg. Off. J. Am. Acad. Otolaryngol. Head Neck Surg. 152(4), 598–609 (2005)CrossRefGoogle Scholar
  16. 16.
    Schroeder, W.J., Avila, L.S., Hoffman, W.: Visualizing with VTK: a tutorial. IEEE Comput. Graphics Appl. 20(5), 20–27 (2000)CrossRefGoogle Scholar
  17. 17.
    Haines, R.F., Chuang, S.L.: The effects of video compression on acceptability of images for monitoring life sciences experiments. In: EEE Computer Society Data Compression Conference. NASA-TP-3239, A-92040, NAS 1.60:3239 Snowbird, UT, United States (1992)Google Scholar
  18. 18.
    Schmalstieg, D.: The remote rendering pipeline: managing geometry and bandwidth in distributed virtual environments. Ph.D. Vienna University of Technology, Vienna (1997)Google Scholar
  19. 19.
    Li, C., Cu, C., Gui, C., et al.: Level set evolution without reinitialization: a new variational formulation. In: Processings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 430–436, San Deigo, USA (2005)Google Scholar
  20. 20.
    Székely, A., Talanow, R., Bágyi, P.: Smartphones, tablets and mobile applications for radiology. Eur. J. Radiol. 82(5), 829–836 (2013)CrossRefGoogle Scholar
  21. 21.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 1:321–1:331 (1988)zbMATHGoogle Scholar
  22. 22.
    Wang, Y., Hong, F., Wu, E.: The implementation and design of medical image process sub-system based on VTK library. Comput. Eng. Appl. 2003(08), 205–207 (2003)Google Scholar
  23. 23.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu, Y., Li, C., Guo, S., Song, Y., Zhao, Y.: A novel level set method for segmentation of left and right ventricles from cardiac MR images. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, pp. 4719–4722 (2014)Google Scholar
  25. 25.
    Zabir, I., Paul, S., Rayhan, M.A., Sarker, T., Fattah, S.A., Shahnaz, C.: Automatic brain tumor detection and segmentation from multi-modal MRI images based on region growing and level set evolution. In: 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 503–506, Dhaka, Bangladesh (2015)Google Scholar
  26. 26.
    Liang, R., Chen, X.J., Zhang, J.X.: Auto-Segmentation of lung in CT image series based on level set method with prior knowledge. In: 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), Beijing, pp. 578–582 (2017)Google Scholar
  27. 27.
    Deng, Z., Chen, Y., Zhu, Z., Wang, Y., Wang, Y., Xu, M.: A collaborative and mobile platform for medical image analysis: a preliminary study. In: Chen, Y.W., Tanaka, S., Howlett, R., Jain, L. (eds.) Innovation in Medicine and Healthcare 2017. InMed 2017. Smart Innovation, Systems and Technologies, vol. 71, pp. 130–139. Springer, Cham (2018)Google Scholar
  28. 28.
    Deng, Z., et al.: Semi-automatic segmentation of paranasal sinuses from CT images using active contour with group similarity constraints. In: Chen, Y.W., Tanaka, S., Howlett, R., Jain, L. (eds.) Innovation in Medicine and Healthcare 2017. InMed 2017. Smart Innovation, Systems and Technologies, vol. 71, pp. 89–98. Springer, Cham (2018)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Yinuo Li
    • 1
    Email author
  • Yonghua Li
    • 1
  • Zhuofu Deng
    • 1
  • Zhiliang Zhu
    • 1
  1. 1.College of Software EngineeringNortheastern UniversityShenyangChina

Personalised recommendations