Skip to main content

Evolution

  • Chapter
  • First Online:
  • 847 Accesses

Part of the book series: SpringerBriefs in Ecology ((BRIEFSECOLOGY))

Abstract

Ever since Darwin’s inception of speciation via natural selection, scientists have started to develop models to capture evolutionary dynamics. Two types of models have emerged: those rooted in population genetics versus those modelling the evolutionary dynamics of phenotypic traits, often in the broader context of entangled biotic interactions among populations. An example of the first type is phylogenetic modelling, aiming at building phylogenies based on genetic affinity between organisms of different species or localities. Models of the second type combine analytic tools, such as optimality and game theory in population (and community) ecology, to provide a modelling framework for phenotypic evolution due largely to trait-mediated biotic interactions. This chapter focuses on the second type of evolutionary modelling. In particular, we introduce evolutionary optimality models, evolutionary game theory and adaptive dynamics, as well as evolutionary distribution modelling and the Price equation. These models allow us to explore a plethora of evolutionary dynamics, especially the formulation of endogenous (sympatric) diversification by adaptive dynamics, known as evolutionary branching.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    Article  CAS  Google Scholar 

  • Birand A, Barany E (2014) Evolutionary dynamics through multispecies competition. Theor Ecol 7:367–379

    Article  Google Scholar 

  • Christiansen FB (1991) On conditions for evolutionary stability for a continuously varying character. Am Nat 138:37–50

    Article  Google Scholar 

  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12:119–129

    Article  CAS  Google Scholar 

  • Cohen Y (2009) Evolutionary distributions. Evol Ecol Res 11:611–635

    Google Scholar 

  • Della Rossa F, Dercole F, Landi P (2015) The branching bifurcation of adaptive dynamics. Int J Bifurcat Chaos 25:1540001

    Article  Google Scholar 

  • Dercole (2016) The ecology of asexual pairwise interactions: the generalized law of mass action. Theor Ecol 9:299–321

    Article  Google Scholar 

  • Dercole F, Geritz SAH (2016) Unfolding the resident-invader dynamics of similar strategies. J Theor Biol 394:231–254

    Article  PubMed  Google Scholar 

  • Dercole F, Rinaldi S (2008) Analysis of evolutionary processes: the adaptive dynamics approach and its applications. Princeton University Press, Princeton

    Google Scholar 

  • Dercole F, Della Rossa F, Landi P (2016) The transition from evolutionary stability to branching: a catastrophic evolutionary shift. Sci Rep 6:26310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357

    Article  CAS  PubMed  Google Scholar 

  • Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 241:370–389

    Google Scholar 

  • Doebeli M, Dieckmann U (2000) Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am Nat 156:S77–S101

    Article  PubMed  Google Scholar 

  • Eshel I (1983) Evolutionary and continuous stability. J Theor Biol 103:99–111

    Article  Google Scholar 

  • Gallien L, Landi P, Hui C, Richardson DM (2018) Emergence of weak-intransitive competition through adaptive diversification and ecoevolutionary feedbacks. J Ecol 106:977–889

    Article  Google Scholar 

  • Geritz SAH, Metz JAJ, Kisdi E, Meszéna G (1997) The dynamics of adaptation and evolutionary branching. Phys Rev Lett 78:2024–2027

    Article  CAS  Google Scholar 

  • Geritz SAH, Kisdi E, Meszéna G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57

    Article  Google Scholar 

  • Gyllenberg M, Parvinen K (2001) Necessary and sufficient conditions for evolutionary suicide. Bull Math Biol 63:981–993

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. J Theor Biol 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Hui C, Minoarivelo O, Nuwagaba S, Ramanantoanina A (2015) Adaptive diversification in coevolutionary systems. In: Pontarotti P (ed) Evolutionary biology: biodiversification from genotype to phenotype. Springer, Berlin, pp 167–186

    Chapter  Google Scholar 

  • Hui C, Minoarivelo O, Landi P (2017) Modelling coevolution in ecological networks with adaptive dynamics. Math Meth Appl Sci. https://doi.org/10.1002/mma.4612

  • Kisdi E (1999) Evolutionary branching under asymmetric competition. J Theor Biol 197:149–162

    Article  CAS  PubMed  Google Scholar 

  • Landi P (2014) The emergence of diversity in the adaptive dynamics framework: theory and applications. Politecnico di Milano, PhD Thesis

    Google Scholar 

  • Landi P, Dercole F (2016) The social diversification of fashion. J Math Sociol 40:185–205

    Article  Google Scholar 

  • Landi P, Dercole F, Rinaldi S (2013) Branching scenarios in eco-evolutionary prey-predator models. SIAM J Appl Math 73:1634–1658

    Article  Google Scholar 

  • Landi P, Hui C, Dieckmann U (2015) Fisheries-induced disruptive selection. J Theor Biol 365:204–216

    Article  PubMed  Google Scholar 

  • Lehtonen J (2018) The price equation, gradient dynamics, and continuous trait game theory. Am Nat 191:146–153

    Article  PubMed  Google Scholar 

  • Levin SA, Segel LA (1985) Pattern generation in space and aspect. SIAM Rev 27:45–67

    Article  Google Scholar 

  • Maynard Smith J (1964) Group selection and kin selection. Nature 201:1145–1147

    Article  Google Scholar 

  • Maynard Smith J (1966) Sympatric speciation. Am Nat 100:637–650

    Article  Google Scholar 

  • Maynard Smith J, Price GR (1973) The logic of animal conflicts. Nature 246:15–18

    Article  Google Scholar 

  • Metz JAJ, Nisbet RM, Geritz SAH (1992) How should we define fitness for general ecological scenarios? Trends Ecol Evol 7:198–202

    Article  CAS  PubMed  Google Scholar 

  • Metz JAJ, Gerit SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS (1996) Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction. In: van Strien SJ, Verduyn Lunel SM (eds) Stochastic and spatial structures of dynamical systems. Elsevier Science, Amsterdam, pp 183–231

    Google Scholar 

  • Nowak MA, Sigmund K (1998) Evolution of indirect reciprocity by image scoring. Nature 393:573–577

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker GA, Begon M (1986) Optimal egg size and clutch size: effects of environment and maternal phenotype. Am Nat 128:573–592

    Article  Google Scholar 

  • Pulliam HR (1974) On the theory of optimal diets. Am Nat 108:59–74

    Article  Google Scholar 

  • Queller DC (2017) Fundamental theorems of evolution. Am Nat 289:345–353

    Article  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Wilsenach J, Landi P, Hui C (2017) Evolutionary fields can explain patterns of high-dimensional complexity in ecology. Phys Rev E 95:042401

    Article  PubMed  Google Scholar 

  • Zhang F, Hui C (2014) Recent experience-driven behaviour optimizes foraging. Anim Behav 88:13–19

    Article  Google Scholar 

  • Zhang F, Tao Y, Li ZZ, Hui C (2010) The evolution of cooperation on fragmented landscapes: the spatial Hamilton rule. Evol Ecol Res 12:23–33

    CAS  Google Scholar 

  • Zhang F, Hui C, Pauw A (2013) Adaptive divergence in Darwin’s race: how coevolution can generate trait diversity in a pollination system. Evolution 67:548–560

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hui, C., Landi, P., Minoarivelo, H.O., Ramanantoanina, A. (2018). Evolution. In: Ecological and Evolutionary Modelling. SpringerBriefs in Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-92150-1_3

Download citation

Publish with us

Policies and ethics