Skip to main content

Vestibule, Cochlea and Implants

  • Chapter
  • First Online:
Head and Neck
  • 876 Accesses

Abstract

The start of modern ear research is difficult to establish (see Helidonis 1993 for overview). Deafness was earlier fought by so-called ear or speaking trumpets and hearing tubes (Fig. 8.1c–e). The Paris horns, which even could be carried as a diadem, helped both ears (Fig. 8.1b). Joseph Toynbee’s “Disease of the ear” (1860) has been taken as the starting point of ear research in this book. The concomitant invention of the auriscope by John Brunton (1826–1899) in 1860 (Fig. 8.1a) opened the possibility to enlighten the auditory tube and to inspect the eardrum with artificial light. It became the start of operations for deafness of the ear.

The direct observation of a natural phenomenon or its analysis, even with the most sophisticated techniques, never leads to absolute certainty. R. Chandebois (1983)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adunka O, Kiefer J (2006) Impact of electrode insertion depth on intracochlear trauma. Otolaryngol Head Neck Surg 135:374–382

    Article  Google Scholar 

  • Appler JM, Goodrich LV (2011) Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly. Progr Neurobiol 93:488–508

    Article  CAS  Google Scholar 

  • Avci E, Nauwelaers T, Lenarz T, Hamacher V, Kral A (2014) Variations in microanatomy of the human cochlea. J Comp Neurol Res Syst Neurosci 522:3245–3261

    Google Scholar 

  • Baker CVH, Bronner-Fraser M (2001) Vertebrate cranial placodes. Part I. Embryonic Induction. Dev Biol 232:1–61

    Article  CAS  Google Scholar 

  • Boons T, Brokx JPL, Frijns JHM, Peeraer L, Philips B, Vermeulen A, Wouters J, Van Wieringen A (2012a) Predictors of spoken language development following pediatric cochlear implantation. Ear Hear 33:617–639

    Article  Google Scholar 

  • Boons T, Van Wieringen A, Brokx JPL, Frijns JHM, Peeraer L, Philips B, Vermeulen A, Wouters J (2012b) Effect of pediatric bilateral cochlear implantation on language development. Arch Pediatr Adolesc Med 166:28–34

    Article  Google Scholar 

  • Briaire JJ, Frijns JHM (2005) Unrevaling the electrical compound action potential. Hear Res 205:143–156

    Article  Google Scholar 

  • Briaire JJ, Frijns JHM (2006) The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hear Res 214:17–27

    Article  Google Scholar 

  • Briaire JJ, Westen AA, Frijns JHM (2006) Amplitude non-linearity of the electrically evoked compound action potential (eCAP) of the auditory nerve. Biomechanics 39:S435

    Article  Google Scholar 

  • Bruska M, Ulatowska-Blaszyk K, Weglowski M, Wozniak W, Piotrowski A (2009) Differentiation of the facio-vestibulocochlear ganglionic complex in human embryos of developmental stages 13–15. Folia Morphol Warsz 68:167–173

    CAS  PubMed  Google Scholar 

  • Bulankina AV, Moser T (2012) Neural circuit development in the mammalian cochlea Physiol 27:100–112

    CAS  Google Scholar 

  • Caldas FF, Cardoso CC, de Souza Antunes, Chelminski Barreto M, Teixeira MS, da Silva Melo, Hilgenberg A, Serra LSM, Bahmad F Jr (2016) Analysis of electrically evoked compound action potential of the auditory nerve in children with bilateral cochlear implants. Braz J Otorhinolaryngol 82:123–130

    Article  Google Scholar 

  • Carlson ML, Pelosi S, Haynes DS (2014) Historical development of active middle ear implants. Otolaryngol Clin North Am 47:893–914

    Article  Google Scholar 

  • Chandebois R, Faber J (1983) Automation in animal development. In: Wolsky A, Karger S (eds) Monographs in developmental biology 16. Basel

    Google Scholar 

  • Channer GA, Eshraghi AA, Liu XZ (2011) Middle ear implants: Historical and futuristic perspectives. J Otology 6:10–18

    Article  Google Scholar 

  • Christov F, Munder P, Berg L, Bagus H, Lang S, Arweiler-Harbeck D (2016) ECAP analysis in cochlear implant patients as a function of patient’s age and electrode-design. Eur Ann Otorhinolaryngol Head Neck Dis 133S:S1–S3

    Article  Google Scholar 

  • Clark GM (2015) The multi-channel cochlear implant: Multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. Hear Res 322:4–13

    Article  Google Scholar 

  • Coletti V, Shannon RV (2005) Open set speech perception with Auditory Brainstem Implant? Laryngoscope 115:1974–1978

    Article  Google Scholar 

  • Cushing SL, Papsin BC, Rutka JA, James AL, Gordon KA (2008) Evidence of vestibular and balance dysfunction in children with profound sensorineural hearing loss using cochlear implants. Laryngoscope 118:1814–1823

    Article  Google Scholar 

  • Dhanasingh A, Jolly C (2017) An overview of cochlear implant electrode array designs. Hear Res 356:93–103

    Article  Google Scholar 

  • Deans MR (2013) A balance of form and function: planar polarity and the development of the vestibular maculae. Semin Cell Dev Biol 24:490–498

    Article  Google Scholar 

  • Dechesne CJ, Sans A (1985) Development of vestibular receptor surfaces in human fetuses. Am J Otolaryngol 6:378–387

    Article  CAS  Google Scholar 

  • Djourno A, Eyries C (1957) Prothese auditive par excitation electrique á distance du nerf sensoriel á l’aide d’un bodinage inclus á demeure. Presse Med 35:14–17

    Google Scholar 

  • Ezan J, Montcouquiol M (2013) Revisiting planar cell polarity in the inner ear. Semin Cell Dev Biol 24:499–506

    Article  Google Scholar 

  • Enticott JC, Tari S, Koh SM, Dowell RC, O’Leary SJ (2006) Cochlear implant and vestibular function. Otol Neurotol 27:824–830

    Article  Google Scholar 

  • Fekete DM (1999) Development of the vertebrate ear: insights from knockouts and mutants. TINS 22:263–269

    CAS  PubMed  Google Scholar 

  • Frijns JHM, de Snoo SL, ten Kate JH (1996) Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 95:33–48

    Article  CAS  Google Scholar 

  • Frijns JHM, Briaire JJ, Schoonhoven R (2000) Integrated use of volume conduction and neural models to simulate the response to cochlear implants. Simul Pract Theory 8:75–97

    Article  Google Scholar 

  • Gisselsson L (1950) Experimental investigation into the problem of humoral transmission in the cochlea. Acta oto-laryng, Suppl, p 82

    Google Scholar 

  • Goodrich LV, Strutt D (2011) Principles of planar polarity in animal development. Develop 138:1877–1892

    Article  CAS  Google Scholar 

  • Griffioen BKP (1988) Doktersgereedschap van toen. Reinier de Graaf stichting series nr 4:1–91

    Google Scholar 

  • Hatsushika S, Shepherd RK, Tong YC, Clark GM, Funasaka S (1990) Dimensions of the scala tympani in the human and cat with reference to cochlear implants. Ann Otol Rhinol Laryngol 99:871–876

    Article  CAS  Google Scholar 

  • Helidonis ES (1993) The history of otolaryngology from ancient to modern times. Am J Otolaryn 14:382–392

    Article  CAS  Google Scholar 

  • Hillel AD (1983) History of stapedectomy. Am J Otolaryngol 4:131–140

    Article  CAS  Google Scholar 

  • Hu BH, Zhang C, Frye MD (2017) Immune cells and non-immune cells with immune function in mammalian cochlea. Hear Res. https://doi.org/10.1016/j.heares.2017.12.009

    Article  PubMed  Google Scholar 

  • Huygen PLM, Hinderink JB, Van Den Broek P, Van Den Borne S, Brokx JPL, Mens LHM, Admiraal RJC (1995) The risk of vestibular function loss after intracochlear implantation. Acta Otolaryngol S 520:270–272

    Article  Google Scholar 

  • Irvine DRF (2017) Plasticity in the auditory system. Hear Res. https://doi.org/10.1016/j.heares.2017.10.011

    Article  PubMed  Google Scholar 

  • van der Jagt AMA, Kalkman RK, Briaire JJ, Verbist BM, Frijns JHM (2017) Variations in cochlear duct shape revealed on clinical CT images with an automatic tracing method. Scie Rep 7:17566. https://doi.org/10.1038/s41598-017-16126-6

    Article  CAS  Google Scholar 

  • Jackler RK, Luxford WM, House WF (1987) Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 97:2–14

    Article  CAS  Google Scholar 

  • Jeffery N, Spoor F (2004) Prenatal growth and development of the modern human labyrinth. J Anat 204:71–92

    Article  Google Scholar 

  • Joshi VM, Navlekar SK, Kishore GR, Reddy KJ, Kumar ECV (2012) CT and MR imaging of inner ear and brain in children with congenital sensorineural hearing loss. Radiogr 32:683–698

    Article  Google Scholar 

  • Kalkman RK, Briaire JJ, Dekker DMT, Frijns JMH (2014) Place pitch versus electrode location in a realistic computational model of the implanted human cochlea. Hearing Res 315:10–24

    Article  Google Scholar 

  • Kelly MC (2006) hair cell development: commitment through differentiation. Brain Res 1091:172–185

    Article  Google Scholar 

  • Kelly MC, Chen P (2009) development of form and function in the mammalian cochlea. Curr Opin Neurobiol 19:395–401

    Article  CAS  Google Scholar 

  • Kim JH, Rodriguez-Vazquez JF, Verdugo-Lopez S, Cho KH, Murakami G, Cho BH (2011) Early fetal development of the human cochlea. Anat Rec Hob 294:996–1002

    Article  Google Scholar 

  • Kochkin S (2000) Why my hearing aids are in the drawer: MarkeTrak V The Consumer’s Perspective. Hear J 53:34–42

    Article  Google Scholar 

  • Kösling S, Ommenzetter M, Bartel-Friedrich S (2009) Congenital malformations of the external and middle ear. Eur J Radiol 69:269–279

    Article  Google Scholar 

  • Kumar IDV, Chaitanya DK, Singh V, Reddy DS (2018) A morphometric study of human middle ear ossicles in cadaveric temporal bones of Indian population and a comparative analysis. J Anat Soc India. https://doi.org/10.1016/j.jasi.2018.01.001

    Article  Google Scholar 

  • Li J, Chen K, Li C, Yin D, Zhang T, Dai P (2017) Anatomical measurement of the ossicles in patients with congenital aural atresia and stenosis. Int J Pediat Otorhinolaryngol 101:230–234

    Article  Google Scholar 

  • Lim R, Brichta AM (2016) Anatomical and physiological development of the inner ear. Hear Res 338:9–21

    Article  CAS  Google Scholar 

  • Mammano F (2013) ATP-dependent intercellular Ca(2+) signaling in the developing cochlea: facts, fantasies and perspectives. Semin Cell Dev Biol 24:31–39

    Article  CAS  Google Scholar 

  • Mammano F, Bortolozzi M (2017) Ca2+ signaling, apoptosis and autophagy in the developing cochlea: Milestones to hearing acquisition. Cell Calcium. https://doi.org/10.1016/j.ceca.2017.05.006

    Article  PubMed  Google Scholar 

  • Mistrìk P, Jolly C (2016) Optimal electrode length to match specific cochlear anatomy. Eur Ann Otorhinolaryngol Head Neck Dis 133S:S68–S71

    Article  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Ouellet C, Cohen H (1999) Speech and language development following cochlear implantation. J Neuroling 12:271–288

    Article  Google Scholar 

  • Papsin BC (2005) Cochlear implantation in children with anomalous cochlea-vestibular anatomy. Laryngoscope 115:1–26

    Article  Google Scholar 

  • Pisoni DB, Kronenberger WG, Harris MS, Moberly AC (2017) Three challenges for future research on cochlear implants. World J Otorhinolaryn-Head Neck Surg. https://doi.org/10.1016/j.wjorl.2017.12.010

    Article  Google Scholar 

  • Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60:397–422

    Article  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Ann Rev Neurosci 25:51–101

    Article  CAS  Google Scholar 

  • Schmidt Goffi-Gomez MV, Magalhães MT, Neto RB, Tsuji RK, de Queiroz Telles Gomez M, Bento RF (2012) Auditory brainstem implant outcomes and map parameters: report of experiences in adults and children. Int J Pediat Otorhinolaryngol 76:257–264

    Article  Google Scholar 

  • Sennaroglu L, Ziyad I (2012) Auditory brainstem implantation. Auris Nasus Larynx 39:439–450

    Article  Google Scholar 

  • Stieger C, Djeric D, Kompis M, Remonda L, Häusler L (2006) Anatomical study of the human middle ear for the design of implantable hearing aids. Auris Nasus Larynx 33:375–380

    Article  Google Scholar 

  • Streeter GL (1906) On the development of the membranous labyrinth and the acoustic and facialis nerves in the human embryo. Am J Anat 6:139–165

    Article  Google Scholar 

  • Streit A (2004) Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 276:1–15

    Article  CAS  Google Scholar 

  • Theunissen (2013) Psychopathology in hearing-impaired children. Thesis, University Leiden

    Google Scholar 

  • Timeline of hearing devices and early deaf education (2005–2009) Deafness in disguise, Washington University School of Medicine

    Google Scholar 

  • Van Gendt MJ, Briaire JJ, Kalkman RK, Frijns JHM (2016) A fast stochastic and adaptive model of auditory nerve responses to cochlear implant stimulation. Hear Res 341:130–143

    Article  Google Scholar 

  • Verbist BM, Ferrarini L, Briaire JJ, Zarowski A, Admiraal-Behloul F, Olofsen H, Reiber JHC, Frijns JHM (2009) Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery. Otol Neurotol 30:471–477

    Article  Google Scholar 

  • Wang B, Hu B, Yang S (2015) Cell junction proteins within the cochlea: A review of recent research. J Otol 10:131–135

    Article  Google Scholar 

  • Warr WB, Guinan JJ Jr (1979) Efferent innervation of the organ of corti: two separate systems. Brain Res 173:152–155

    Article  CAS  Google Scholar 

  • Westen AA, Dekker DMT, Briaire JJ, Frijns JHM (2011) Stimulus level effects on neural excitation and eCAP amplitude. Hearing Res 280:166–176

    Article  CAS  Google Scholar 

  • Whitfield TT (2015) Development of the inner ear. Curr Opin Gen Devel 32:112–118

    Article  CAS  Google Scholar 

  • Wilson BS (2017) The cochlear implant and possibilities for narrowing the remaining gaps between prosthetic and normal hearing. World J Otorhinolaryngol-Head and Neck Surg. https://doi.org/10.1016/j.wjorl.2017.12.005

    Article  Google Scholar 

  • Yiin RSZ, Tang PH, Tan TY (2011) Review of congenital inner ear abnormalities on CT temporal bone. Br J Radiol 84:859–863

    Article  CAS  Google Scholar 

  • Zak M, Klis SFL, Grolman W (2015) The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 47:247–258

    Article  CAS  Google Scholar 

  • Zrunek M, Lischka M, Hochmairdesoyer I, Burian K (1980) Dimensions of the scala tympani in relation to the diameters of multichannel electrodes. Arch Otorhinolaryngol 229:159–165

    Article  CAS  Google Scholar 

  • Zwislocki JJ (1981) Middle ear cochlea and Tonndorf. Amer J Otolaryngology 2:240–250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marani, E., Heida, C. (2018). Vestibule, Cochlea and Implants. In: Head and Neck. Springer, Cham. https://doi.org/10.1007/978-3-319-92105-1_9

Download citation

Publish with us

Policies and ethics