Skip to main content

Abstract

In this chapter, we discuss Filter Bank Multicarrier Modulation (FBMC), a transmission scheme with superior spectral properties when compared with orthogonal frequency-division multiplexing. We first provide a general motivation, followed by a detailed description of the underlying idea behind FBMC. We then present a matrix-based system model and explain how to efficiently generate FBMC signals. Afterward, we assess the performance of one-tap equalizers in doubly selective channels. We also describe how to restore complex orthogonality in FBMC by a simple spreading technique and how such method improves certain aspects of FBMC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The channel must be known at the receiver. Channel estimation itself becomes more challenging in FBMC, as we will discuss later in this section.

  2. 2.

    The SNR is often below 20 dB. Wireless systems are interference limited and what we call “noise” is in practice often interference from other users and real-world hardware effects.

  3. 3.

    Only some specific MIMO techniques become more challenging in FBMC. Many other MIMO methods, such as receive diversity or spatial multiplexing based on Zero-Forcing (ZF) or MMSE equalization, can be straightforwardly employed in FBMC.

References

  1. 3GPP, TR 38.900: study on channel model for frequency spectrum above 6GHz (release 14) (2016a), http://www.3gpp.org/DynaReport/38900.htm

  2. 3GPP, TR 38.913: study on scenarios and requirements for next generation access technologies (release 14) (2016b), http://www.3gpp.org/DynaReport/38913.htm

  3. 3GPP, TR 38.802: study on new radio access technology; physical layer aspects (release 14) (2017), http://www.3gpp.org/DynaReport/38802.htm

  4. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  5. P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, A. Ugolini, Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? an overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Process. Mag. 31(6), 80–93 (2014)

    Article  Google Scholar 

  6. M. Bellanger, D. Le Ruyet, D. Roviras, M. Terré, J. Nossek, L. Baltar, Q. Bai, D. Waldhauser, M. Renfors, T. Ihalainen et al., FBMC Physical Layer: A Primer. PHYDYAS (2010)

    Google Scholar 

  7. M.G. Bellanger, Specification and design of a prototype filter for filter bank based multicarrier transmission, in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, (2001), pp. 2417–2420

    Google Scholar 

  8. H. Bölcskei, Orthogonal frequency division multiplexing based on offset QAM, in Advances in Gabor analysis (Springer, 2003), pp. 321–352

    Google Scholar 

  9. R.W. Chang, Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Syst. Tech. J. 45(10), 1775–1796 (1966)

    Article  Google Scholar 

  10. J.M. Choi, Y. Oh, H. Lee, J.S. Seo, Pilot-aided channel estimation utilizing intrinsic interference for FBMC/OQAM systems. IEEE Trans. Broadcast. 63(4), 644–655 (2017)

    Article  Google Scholar 

  11. W. Cui, D. Qu, T. Jiang, B. Farhang-Boroujeny, Coded auxiliary pilots for channel estimation in FBMC-OQAM systems. IEEE Trans. Veh. Technol. 65(5), 2936–2946 (2016)

    Article  Google Scholar 

  12. B. Farhang-Boroujeny, OFDM versus filter bank multicarrier. IEEE Signal Process. Mag. 28(3), 92–112 (2011)

    Article  Google Scholar 

  13. H.G. Feichtinger, T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications (Springer Science & Business Media, 2012)

    Google Scholar 

  14. G.P. Fettweis, The tactile internet: applications and challenges. IEEE Veh. Technol. Mag. 9(1), 64–70 (2014)

    Article  Google Scholar 

  15. M. Fuhrwerk, J. Peissig, M. Schellmann, Channel adaptive pulse shaping for OQAM-OFDM systems, in IEEE European Signal Processing Conference (EUSIPCO) (2014), pp. 181–185

    Google Scholar 

  16. R. Haas, J.C. Belfiore, A time-frequency well-localized pulse for multiple carrier transmission. Wirel. Pers. Commun. 5(1), 1–18 (1997)

    Article  Google Scholar 

  17. F.M. Han, X.D. Zhang, Wireless multicarrier digital transmission via Weyl-Heisenberg frames over time-frequency dispersive channels. IEEE Trans. Commun. 57(6) (2009)

    Google Scholar 

  18. T. Ihalainen, A. Viholainen, T.H. Stitz, M. Renfors, M. Bellanger, Filter bank based multi-mode multiple access scheme for wireless uplink, in IEEE European Signal Processing Conference (EUSIPCO) (2009), pp. 1354–1358

    Google Scholar 

  19. J.P. Javaudin, D. Lacroix, A. Rouxel, Pilot-aided channel estimation for OFDM/OQAM, in IEEE Vehicular Technology Conference (VTC), vol. 3 (2003), pp. 1581–1585

    Google Scholar 

  20. E. Kofidis, D. Katselis, A. Rontogiannis, S. Theodoridis, Preamble-based channel estimation in OFDM/OQAM systems: a review. Signal Proces. 93(7), 2038–2054 (2013)

    Article  Google Scholar 

  21. C. Lélé, R. Legouable, P. Siohan, Channel estimation with scattered pilots in OFDM/OQAM, in IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2008), pp. 286–290

    Google Scholar 

  22. C. Lélé, P. Siohan, R. Legouable, M. Bellanger, CDMA transmission with complex OFDM/OQAM. EURASIP J. Wirel. Commun. Netw. Article ID 748063, 1–12 (2008)

    Google Scholar 

  23. C. Lélé, P. Siohan, R. Legouable, The Alamouti scheme with CDMA-OFDM/OQAM. EURASIP J. Adv. Signal Process. Article ID 703513, 1–13 (2010)

    Google Scholar 

  24. Y.G. Li, G.L. Stuber, Orthogonal Frequency Division Multiplexing for Wireless Communications (Springer Science & Business Media, 2006)

    Google Scholar 

  25. J. Manz, A sequency-ordered fast Walsh transform. IEEE Trans. Audio Electroacoustic 20(3), 204–205 (1972)

    Article  Google Scholar 

  26. D. Mattera, M. Tanda, M. Bellanger, Filter bank multicarrier with PAM modulation for future wireless systems. Signal Process. 120, 594–606 (2016)

    Article  Google Scholar 

  27. G. Matz, D. Schafhuber, K. Grochenig, M. Hartmann, F. Hlawatsch, Analysis, optimization, and implementation of low-interference wireless multicarrier systems. IEEE Trans. Wirel. Commun. 6(5), 1921–1931 (2007)

    Article  Google Scholar 

  28. S. Mirabbasi, K. Martin, Design of prototype filter for near-perfect-reconstruction overlapped complex-modulated transmultiplexers, in IEEE International Symposium on Circuits and Systems (2002)

    Google Scholar 

  29. A.F. Molisch, Wireless Communications, vol. 34 (Wiley, 2012)

    Google Scholar 

  30. D. Na, K. Choi, Intrinsic ICI-free Alamouti coded FBMC. IEEE Commun. Lett. 20(10), 1971–1974 (2016)

    Article  Google Scholar 

  31. D. Na, K. Choi, Low PAPR FBMC. IEEE Trans. Wirel. Commun. 17(1), 182–193 (2018)

    Article  Google Scholar 

  32. R. Nissel, Filter bank multicarrier modulation for future wireless systems. Dissertation, TU Wien, 2017

    Google Scholar 

  33. R. Nissel, M. Rupp, Bit error probability for pilot-symbol aided channel estimation in FBMC-OQAM, in IEEE International Conference on Communications (ICC) (2016a)

    Google Scholar 

  34. R. Nissel, M. Rupp, Enabling low-complexity MIMO in FBMC-OQAM, in IEEE Globecom Workshops (GC Wkshps) (2016b)

    Google Scholar 

  35. R. Nissel, M. Rupp, On pilot-symbol aided channel estimation in FBMC-OQAM, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016c), pp. 3681–3685

    Google Scholar 

  36. R. Nissel, M. Rupp, OFDM and FBMC-OQAM in doubly-selective channels: Calculating the bit error probability. IEEE Commun. Lett. 21(6), 1297–1300 (2017)

    Article  Google Scholar 

  37. R. Nissel, M. Rupp, Pruned DFT spread FBMC-OQAM: low-PAPR, low latency, high spectral efficiency. IEEE Trans. Commun. (2018)

    Google Scholar 

  38. R. Nissel, S. Caban, M. Rupp, Experimental evaluation of FBMC-OQAM channel estimation based on multiple auxiliary symbols, in IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM) (2016)

    Google Scholar 

  39. R. Nissel, J. Blumenstein, M. Rupp, Block frequency spreading: a method for low-complexity MIMO in FBMC-OQAM, in IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2017a)

    Google Scholar 

  40. R. Nissel, M. Rupp, R. Marsalek, FBMC-OQAM in doubly-selective channels: a new perspective on MMSE equalization, in IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2017b)

    Google Scholar 

  41. R. Nissel, S. Schwarz, M. Rupp, Filter bank multicarrier modulation schemes for future mobile communications. IEEE J. Sel. Areas Commun. 35(8), 1768–1782 (2017c)

    Article  Google Scholar 

  42. R. Nissel, E. Zöchmann, M. Lerch, S. Caban, M. Rupp, Low-latency MISO FBMC-OQAM: it works for millimeter waves! in IEEE International Microwave Symposium (2017d)

    Google Scholar 

  43. R. Nissel, E. Zöchmann, M. Rupp, On the influence of doubly-selectivity in pilot-aided channel estimation for FBMC-OQAM, in IEEE Vehicular Technology Conference (VTC Spring) (2017e)

    Google Scholar 

  44. Z. Pi, F. Khan, An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)

    Article  Google Scholar 

  45. Qualcomm Incorporated, Waveform candidates, in 3GPP TSG-RAN WG1 84b (Busan, Korea, 2016)

    Google Scholar 

  46. M. Renfors, T. Ihalainen, T. H. Stitz, A block-Alamouti scheme for filter bank based multicarrier transmission, in European Wireless Conference (EW) (2010)

    Google Scholar 

  47. M. Renfors, X. Mestre, E. Kofidis, F. Bader, Orthogonal Waveforms and Filter Banks for Future Communication Systems (Academic Press, 2017)

    Google Scholar 

  48. P. Robertson, S. Kaiser, The effects of Doppler spreads in OFDM(A) mobile radio systems, in IEEE Vehicular Technology Conference (VTC Fall) (1999), pp. 329–333

    Google Scholar 

  49. F. Rottenberg, X. Mestre, D. Petrov, F. Horlin, J. Louveaux, Parallel equalization structure for MIMO FBMC-OQAM systems under strong time and frequency selectivity. IEEE Trans. Signal Process. 65(17), 4454–4467 (2017)

    Article  MathSciNet  Google Scholar 

  50. A. Sahin, I. Guvenc, H. Arslan, A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects. IEEE Commun. Surv. Tutor. 16(3), 1312–1338 (2012)

    Article  Google Scholar 

  51. B. Saltzberg, Performance of an efficient parallel data transmission system. IEEE Trans. Commun. Technol. 15(6), 805–811 (1967)

    Article  Google Scholar 

  52. F. Schaich, T. Wild, Y. Chen, Waveform contenders for 5G-suitability for short packet and low latency transmissions, in IEEE Vehicular Technology Conference (VTC Spring) (2014), pp. 1–5

    Google Scholar 

  53. F. Schaich, T. Wild, R. Ahmed, Subcarrier spacing-how to make use of this degree of freedom, in IEEE Vehicular Technology Conference (VTC Spring) (2016), pp. 1–6

    Google Scholar 

  54. S. Sesia, M. Baker, I. Toufik, LTE-the UMTS Long Term Evolution: from Theory to Practice (Wiley, 2011)

    Google Scholar 

  55. P. Siohan, C. Siclet, N. Lacaille, Analysis and design of OFDM/OQAM systems based on filterbank theory. IEEE Trans. Signal Process. 50(5), 1170–1183 (2002)

    Article  Google Scholar 

  56. E. Telatar, Capacity of multi-antenna gaussian channels. Trans. Emerg. Telecommun. Technol. 10(6), 585–595 (1999)

    Article  MathSciNet  Google Scholar 

  57. M. Vetterli, J. Kovačević, V.K Goyal, Foundations of Signal Processing (Cambridge University Press, 2014)

    Google Scholar 

  58. S. Weinstein, P. Ebert, Data transmission by frequency-division multiplexing using the discrete fourier transform. IEEE Trans. Commun. Technol. 19(5), 628–634 (1971)

    Article  Google Scholar 

  59. G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag et al., 5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 52(2), 97–105 (2014)

    Article  Google Scholar 

  60. B. Yu, S. Hu, P. Sun, S. Chai, C. Qian, C. Sun, Channel estimation using dual-dependent pilots in FBMC/OQAM systems. IEEE Commun. Lett. 20(11), 2157–2160 (2016)

    Article  Google Scholar 

  61. C.H. Yuen, P. Amini, B. Farhang-Boroujeny, Single carrier frequency division multiple access (SC-FDMA) for filter bank multicarrier communication systems, in IEEE International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM) (2010), pp. 1–5

    Google Scholar 

  62. R. Zakaria, D. Le Ruyet, A novel filter-bank multicarrier scheme to mitigate the intrinsic interference: application to MIMO systems. IEEE Trans. Wirel. Commun. 11(3), 1112–1123 (2012)

    Article  Google Scholar 

  63. X. Zhang, M. Jia, L. Chen, J. Ma, J. Qiu, Filtered-OFDM-enabler for flexible waveform in the 5th generation cellular networks, in IEEE Global Communications Conference (GLOBECOM) (2015), pp. 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Nissel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nissel, R., Rupp, M. (2019). Filter Bank Multicarrier Modulation. In: Vaezi, M., Ding, Z., Poor, H. (eds) Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-92090-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92090-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92089-4

  • Online ISBN: 978-3-319-92090-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics