Skip to main content

OFDM Enhancements for 5G Based on Filtering and Windowing

  • Chapter
  • First Online:
Multiple Access Techniques for 5G Wireless Networks and Beyond

Abstract

In this chapter, different variants envisioned for the 5G new radio (NR) waveform implementation are discussed, satisfying the 5G NR requirements for release 15 and beyond. We outline the limitations of conventional CP-OFDM in serving the potential use cases for NR. Two main classes of waveform preprocessing are considered to increase the spectral decay rate of CP-OFDM, namely windowing and filtering. Three waveforms are selected for the comparison, namely windowed overlap-add (WOLA) as a windowing technique, universal filtered orthogonal frequency division multiplex (UF-OFDM) and filtered orthogonal frequency division multiplex (f-OFDM) as subband filtering techniques. We outline the design principles of all three waveforms and discuss the overall performance and implementation aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Orthogonality here means that no crosstalk occurs in the detection process between the different subcarriers.

References

  1. Machina research, Technical report, Aug 2016

    Google Scholar 

  2. 3rd Generation Partnership Project; TS 36.211, E-UTRA, Physical Channels and Modulation (Release 13) (2016)

    Google Scholar 

  3. 3rd Generation Partnership Project; TS 36.211, E-UTRA, Physical Channels and Modulation (Release 14) (2017)

    Google Scholar 

  4. J. Proakis, Digital Communications. 4th edn. (Mc Graw-Hill Book Company, 2001)

    Google Scholar 

  5. R.W. Chang, High-speed multichannel data transmission with bandlimited orthogonal signals. Bell Sys. Tech. 45, 1775–96 (1966)

    Article  Google Scholar 

  6. S.B. Weinstein, The history of orthogonal frequency-division multiplexing [History of Communications]. Commun. Mag. IEEE 47(11), 26–35 (2009)

    Article  Google Scholar 

  7. S. Venkatesan, R.A, Valenzuela, OFDM for 5G: cyclic prefix versus zero postfix, and filtering versus windowing, in 2016 IEEE International Conference on Communications (ICC), pp. 1–5, May 2016

    Google Scholar 

  8. B. Farhang-Boroujeny, OFDM versus filter bank multicarrier. IEEE Signal Process. Mag. 28(3), 92–112 (2011)

    Article  Google Scholar 

  9. G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Yejian Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, F, Wiedmann, 5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 52(2), 97–105 (2014)

    Google Scholar 

  10. M. Bellanger, FBMC Physical Layer: A Primer (2010)

    Google Scholar 

  11. F. Schaich, T. Wild, Y. Chen, Waveform Contenders for 5G—suitability for short packet and low latency transmissions, in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2014

    Google Scholar 

  12. NGMN Alliance, NGMN 5G White Paper (2015), http://www.ngmn.org/5g-white-paper.html

  13. A. Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten, H. Tullberg, M.A. Uusitalo, M. Schellman, The foundation of the mobile and wireless communications system for 2020 and beyond: challenges, enablers and technology solutions, in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5, June 2013

    Google Scholar 

  14. 3GPP TR 38.912 Study on New Radio (NR) access technology (Release 14) (2017)

    Google Scholar 

  15. F. Schaich, T. Wild, Subcarrier spacing–a neglected degree of freedom? in 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 56–60, June 2015

    Google Scholar 

  16. R1-167963 Way forward on waveform RAN1#86 (2016)

    Google Scholar 

  17. Y. Chen, F. Schaich, T. Wild, Multiple access and waveforms for 5G: IDMA and universal filtered multi-carrier, in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2014

    Google Scholar 

  18. F. Schaich, T. Wild, Relaxed synchronization support of universal filtered multi-carrier including autonomous timing advance, in 2014 11th International Symposium on Wireless Communications Systems (ISWCS), pp. 203–208, Aug 2014

    Google Scholar 

  19. R1-163615 WF on overview of NR RAN1#84bis (2016)

    Google Scholar 

  20. RAN1#86bis chairmans notes

    Google Scholar 

  21. R4-1610921 Way forward on in-band requirements for NR RAN4#81, Nov 2016

    Google Scholar 

  22. Ericsson. R1-163224 Waveform candidates RAN1#84bis (2016)

    Google Scholar 

  23. G. Berardinelli, F.M.L. Tavares, T.B. Strensen, P. Mogensen, K. Pajukoski, Zero-tail DFT-spread-OFDM signals, in 2013 IEEE Globecom Workshops (GC Wkshps), pp. 229–234, Dec 2013

    Google Scholar 

  24. Qualcomm, 5G Waveform & Multiple Access Techniques, https://www.qualcomm.com/documents/5g-research-waveform-and-multiple-access-techniques (2015)

  25. Qualcomm, R1-162199 Feasibility of Mixing Numerology in an OFDM System RAN1#84bis (2016)

    Google Scholar 

  26. Nokia, R1-165014 Subband-wise filtered OFDM for New Radio below 6 GHz RAN1#85 (2016)

    Google Scholar 

  27. LG. R1-162516 Flexible CP-OFDM with variable ZP RAN1#84bis, Apr 2016

    Google Scholar 

  28. X. Wang, T. Wild, F. Schaich, S. ten Brink, Pilot-aided channel estimation for universal filtered multi-carrier, in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), pp. 1–5, Sept 2015

    Google Scholar 

  29. R. Ahmed, T. Wild, F. Schaich, Coexistence of UF-OFDM and CP-OFDM, in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2016

    Google Scholar 

  30. J. Abdoli, M. Jia, J. Ma, Filtered OFDM: a new waveform for future wireless systems, in 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 66–70, June 2015

    Google Scholar 

  31. X. Zhang, M. Jia, L. Chen, J. Ma, J. Qiu, Filtered-OFDM—enabler for flexible waveform in the 5th generation cellular networks, in 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Dec 2015

    Google Scholar 

  32. Huawei, R1-164033 f-OFDM scheme and filter design RAN1#85 (2016)

    Google Scholar 

  33. R1-166004, R4-164542, Response LS on realistic power amplifier model for NR waveform evaluation, May 2016

    Google Scholar 

  34. E. Dahlman, S. Parkvall, J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband. Academic Press, 1st ed. (2011)

    Google Scholar 

  35. R1-1609564 Implementation-specific UF-OFDM for New Radio (2016)

    Google Scholar 

  36. R1-164685, OFDM based waveform single user evaluation RAN1#85 (2016)

    Google Scholar 

  37. R1-166093, Waveform evaluation updates for case 1a and case 1b, Aug 2016

    Google Scholar 

  38. M. Matthe, D. Zhang, F. Schaich, T. Wild, R. Ahmed, G. Fettweis, A reduced complexity time-domain transmitter for UF-OFDM, in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2016

    Google Scholar 

  39. Samsung, R1-166746 Discussion on multi-window OFDM for NR waveform RAN1#86 (2016)

    Google Scholar 

  40. M. Renfors, J. Yli-Kaakinen, T. Levanen, M. Valkama, T. Ihalainen, J. Vihriala, Efficient fast-convolution implementation of filtered CP-OFDM waveform processing for 5G, in 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–7, Dec 2015

    Google Scholar 

  41. J. Yli-Kaakinen, T. Levanen, S. Valkonen, K. Pajukoski, J. Pirskanen, M. Renfors, M. Valkama, Efficient fast-convolution-based waveform processing for 5G Physical Layer. CoRR, abs/1706.02853 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, R., Schaich, F., Wild, T. (2019). OFDM Enhancements for 5G Based on Filtering and Windowing. In: Vaezi, M., Ding, Z., Poor, H. (eds) Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-92090-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92090-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92089-4

  • Online ISBN: 978-3-319-92090-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics