Skip to main content

Low Density Spreading Multiple Access

  • Chapter
  • First Online:
  • 3438 Accesses

Abstract

The need for ubiquitous coverage and the increasing demand for high data rate services, keeps constant pressure on the cellular network infrastructure. There has been intense research to improve the system spectral efficiency and coverage, and a significant part of this effort focused on developing and optimizing the multiple access techniques. One such technique that has been recently proposed is the low density spreading (LDS), which manages the multiple access interference to offer efficient and low complexity multiuser detection. The LDS technique has shown a promising performance as a multiple access technique for cellular systems. This chapter will give an overview on the LDS multiple access technique. The motivations for the LDS design will be highlighted by comparing it to conventional spreading techniques, including brief history of the early work on LDS. Furthermore, a background on the design of LDS in multicarrier communications, such as signatures design, a belief propagation multiuser detection, etc., will be presented along with the challenges and opportunities associated with the multicarrier LDS multiple access.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F. Adachi, M. Sawahashi, H. Suda, Wideband DS-CDMA for next-generation mobile communications systems. IEEE Commun. Mag. 36(9), 56–69 (1998)

    Article  Google Scholar 

  2. M. Al-Imari, R. Hoshyar, Reducing the peak to average power ratio of LDS-OFDM signals, in International Symposium on Wireless Communication Systems (2010), pp. 922–926

    Google Scholar 

  3. M. Al-Imari, M.A. Imran, R. Tafazolli, D. Chen, Subcarrier and power allocation for LDS-OFDM system, in IEEE Vehicular Technology Conference (2011), pp. 1–5

    Google Scholar 

  4. M. Al-Imari, M.A. Imran, R. Tafazolli, Low density spreading for next generation multicarrier cellular systems, in International Conference on Future Communication Networks (ICFCN) (2012), pp. 52–57

    Google Scholar 

  5. M. Al-Imari, M.A. Imran, P. Xiao, Radio resource allocation for multicarrier low-density-spreading multiple access. IEEE Trans. Veh. Technol. 66(3), 2382–2393 (2017)

    Article  Google Scholar 

  6. S. Boyd, Multitone signals with low crest factor. IEEE Trans. Circuits Syst. 33(10), 1018–1022 (1986)

    Article  Google Scholar 

  7. X. Cai, S. Zhou, G. Giannakis, Group-orthogonal multicarrier CDMA. IEEE Trans. Commun. 52(1), 90–99 (2004)

    Article  Google Scholar 

  8. G. Colavolpe, G. Germi, On the application of factor graphs and the sum-product algorithm to ISI channels. IEEE Trans. Commun. 53(5), 818–825 (2005)

    Article  Google Scholar 

  9. D. Gimlin, C. Patisaul, On minimizing the peak-to-average power ratio for the sum of \(N\) sinusoids. IEEE Trans. Commun. 41(4), 631–635 (1993)

    Article  Google Scholar 

  10. D. Guo, C.C. Wang, Multiuser detection of sparsely spread CDMA. IEEE J. Sel. Areas Commun. 26(3), 421–431 (2008)

    Article  Google Scholar 

  11. Y. Kabashima, A CDMA multiuser detection algorithm on the basis of belief propagation. J. Phys. A: Math. General 36, 11111–11121 (2003)

    Article  MathSciNet  Google Scholar 

  12. A. Kapur, M. Varanasi, C. Mullis, On the limitation of generalized Welch-bound equality signals. IEEE Trans. Inf. Theory 51(6), 2220–2224 (2005)

    Article  MathSciNet  Google Scholar 

  13. F. Kschischang, B. Frey, H.A. Loeliger, Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  Google Scholar 

  14. D. MacKay, Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 45(2), 399–431 (1999)

    Article  MathSciNet  Google Scholar 

  15. J. McGowan, R. Williamson, Loop removal from LDPC codes, in IEEE Information Theory Workshop (2003), pp. 230–233

    Google Scholar 

  16. A. Montanari, D. Tse, Analysis of belief propagation for non-linear problems: the example of CDMA (or: How to prove Tanaka’s formula), in IEEE Information Theory Workshop (2006), pp. 160–164

    Google Scholar 

  17. S. Narahashi, T. Nojima, New phasing scheme of \(N\)-multiple carriers for reducing peak-to-average power ratio. Electron. Lett. 30(17), 1382–1383 (1994)

    Article  Google Scholar 

  18. J.P. Neirotti, D. Saad, Improved message passing for inference in densely connected systems. Europhys. Lett. 71(5), 866–872 (2005)

    Article  Google Scholar 

  19. D.J. Newman, An \(L^1\) extremal problem for polynomials. Proc. Am. Math. Soc. 16, 1287–1290 (1965)

    MATH  Google Scholar 

  20. J. Raymond, D. Saad, Sparsely spread CDMA–a statistical mechanics-based analysis. J. Phys. A: Math. Theor. 40, 12315–12333 (2007)

    Article  MathSciNet  Google Scholar 

  21. T. Tanaka, M. Okada, Approximate belief propagation, density evolution, and statistical neurodynamics for CDMA multiuser detection. IEEE Trans. Inf. Theory 51(2), 700–706 (2005)

    Article  MathSciNet  Google Scholar 

  22. S. Verdu, Minimum probability of error for asynchronous gaussian multiple-access channels. IEEE Trans. Inf. Theory 32(1), 85–96 (1986)

    Article  MathSciNet  Google Scholar 

  23. F. Wathan, R. Hoshyar, R. Tafazolli, Dynamic grouped chip-level iterated multiuser detection based on gaussian forcing technique. IEEE Commun. Lett. 12(3), 167–169 (2008)

    Article  Google Scholar 

  24. L. Welch, Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory 20(3), 397–399 (1974)

    Article  Google Scholar 

  25. J. Yedidia, W. Freeman, Y. Weiss, Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51(7), 2282–2312 (2005)

    Article  MathSciNet  Google Scholar 

  26. M. Yoshida, T. Tanaka, Analysis of sparsely-spread CDMA via statistical mechanics, in IEEE International Symposium on Information Theory (2006), pp. 2378–2382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Al-Imari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Imari, M., Imran, M.A. (2019). Low Density Spreading Multiple Access. In: Vaezi, M., Ding, Z., Poor, H. (eds) Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-92090-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92090-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92089-4

  • Online ISBN: 978-3-319-92090-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics