Skip to main content

A Design Workbench for Interactive Music Systems

  • Chapter
  • First Online:

Part of the book series: Springer Series on Cultural Computing ((SSCC))

Abstract

This chapter discusses possible links between the fields of computer music and human-computer interaction (HCI), particularly in the context of the MIDWAY project between Inria, France and McGill University, Canada. The goal of MIDWAY is to construct a “musical interaction design workbench” to facilitate the exploration and development of new interactive technologies for musical creation and performance by bringing together useful models, tools, and recent developments from computer music and HCI. Such models and tools can expand the means available for musical expression, as well as provide HCI researchers with a better foundation for the design of tools for a class of “extreme” users who are accustomed to devoting decades of practice towards the development of expertise with their instruments. We conclude with a discussion of design guidelines for Interactive Music Systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Windows, Icons, Menu, Pointer.

  2. 2.

    And/or synthesis for other modalities such as haptic or video displays.

  3. 3.

    To be clear, we do not suggest the existence of an abstract system model in the performer’s brain, but that sensorimotor programs can link the performer-instrument system in a way that affords predictive control.

  4. 4.

    See also the discussion on co-adaptation in Chap. 7 of this volume, “HCI, Music and Art: An Interview with Wendy Mackay” (Wanderley and Mackay 2019).

  5. 5.

    Video showing how to approach the instrument: https://youtu.be/FMU8YAYiqos.

References

  • Appert C, Huot S, Dragicevic P, Beaudouin-Lafon M (2009) FlowStates : prototypage d’applications interactives avec des flots de données et des machines à états. In: Proceedings of ACM/IHM 2009, pp 119–128

    Google Scholar 

  • Barbosa J, Wanderley MM, Huot S (2017) Exploring playfulness in NIME design: the case of live looping tools. In: Proceedings of the 2017 international conference on new interfaces for musical expression, Copenhagen, Denmark, pp 87–92

    Google Scholar 

  • Beaudouin-Lafon M (2000) Instrumental interaction: an interaction model for designing post-WIMP user interfaces. In: Proceedings ACM CHI, pp 446–453

    Google Scholar 

  • Beaudouin-Lafon M, Mackay WE (2000) Reification, polymorphism and reuse: three principles for designing visual interfaces. In: Proceedings of ACM/AVI, pp 102–109

    Google Scholar 

  • Berthaut F, Dahl L (2015) BOEUF: a unified framework for modeling and designing digital orchestras. In: International symposium on computer music multidisciplinary research. Springer, pp 153–166

    Google Scholar 

  • Cook P (2001) Principles for designing computer music controllers. In: ACM-CHI NIME workshop, Seattle, USA. Reprinted and expanded with author’s and expert’s comments in Jensenius AR, Lyons MJ (eds) A NIME reader: fifteen years of new interfaces for musical expression. Springer, 2017, pp 1–13

    Google Scholar 

  • Cook P (2009) Re-designing principles for computer music controllers: a case study of SqueezeVox Maggie. In: Proceedings of the international conference on new interfaces for musical expression, Pittsburgh, USA, pp 218–221

    Google Scholar 

  • Dragicevic P, Fekete JD (2001) Input device selection and interaction configuration with ICON. In: Blandford A, Vanderdonckt J, Gray P (eds) Proceedings of IHM-HCI 2001. People and computers XV—interaction without frontiers. Lille, France. Springer, pp 543–448

    Google Scholar 

  • Eaglestone B, Ford N (2001) Composition systems requirements for creativity: what research methodology? In: Proceedings of the MOSART workshop, pp 7–16

    Google Scholar 

  • Fiebrink R, Trueman D, Britt C, Nagai M, Kaczmarek K, Early M, Daniel MR, Hege A, Cook P (2010) Toward understanding human-computer interaction in composing the instrument. In: Proceedings of the international computer music conference, New York, USA

    Google Scholar 

  • Garcia J, Tsandilas T, Agon C, Mackay WE (2012) Interactive paper substrates to support musical creation. In: Proceedings of ACM/CHI, pp 1825–1828

    Google Scholar 

  • Garcia J, Leroux P, Bresson J (2014a) pOM: Linking pen gestures to computer-aided composition processes. In: Proceedings of the 40th international computer music conference joint with the 11th sound & music computing conference

    Google Scholar 

  • Garcia J, Tsandilas T, Agon C, Mackay WE (2014b) PaperComposer: creating interactive paper interfaces for music composition. In: Proceedings of ACM/IHM, Lille, France, pp 1–8

    Google Scholar 

  • Garcia J, Tsandilas T, Agon C, Mackay WE (2014c) Structured observation with polyphony: a multifaceted tool for studying music composition. In: Proceedings of the 2014 conference on designing interactive systems, pp 199–208

    Google Scholar 

  • Hödl O, Kayali F, Fitzpatrick G, Holland S (2016) LiveMAP design cards for technology-mediated audience participation in live music. In: Mudd T, Holland S, Wilkie K (eds) Proceedings of the music and HCI workshop, CHI 2016, San Jose, USA

    Google Scholar 

  • Hunt A, Kirk R (2000) Mapping strategies for musical performance. In: Wanderley MM, Battier M (eds) Trends in gestural control of music. Ircam Centre Pompidou, France, pp 231–258

    Google Scholar 

  • Hunt A, Wanderley MM (2002) Mapping performer parameters to synthesis engines. Organ Sound 7(2):97–108

    Article  Google Scholar 

  • Huot S (2013) ‘Designeering interaction’: a missing link in the evolution of human-computer interaction. Habilitation à Diriger des Recherches, Université Paris-Sud XI, France

    Google Scholar 

  • Jacob RJK, Sibert LE, McFarlane DC, Mullen MP (1994) Integrality and separability of input devices. ACM Trans Comput-Hum Interact 1(1):3–26

    Article  Google Scholar 

  • Leman M (2008) Embodied music cognition and mediation technology. MIT Press

    Google Scholar 

  • Mackay WE (2000) Responding to cognitive overload: co-adaptation between users and technology. Intellectica 30(1):177–193

    Google Scholar 

  • Malloch J, Birnbaum D, Sinyor E, Wanderley MM (2006) Towards a new conceptual framework for digital musical instruments. In: Proceedings of the international conference on digital audio effects, Montreal, Canada, pp 49–52

    Google Scholar 

  • Malloch J, Sinclair S, Wanderley MM (2014) Distributed tools for interactive design of heterogeneous signal networks. Multimed Tools Appl 74(15):5683–5707

    Article  Google Scholar 

  • Malloch J, Wanderley MM (2007) The T-Stick: from musical interface to musical instrument. In: Proceedings of the international conference on new interfaces for musical expression, New York, USA, pp 66–69

    Google Scholar 

  • Malloch J, Wanderley MM (2017) Embodied cognition and digital musical instruments: design and performance. In: Lesaffre M, Maes PJ, Leman M (eds) The Routledge companion to embodied music interaction, p 440–449

    Chapter  Google Scholar 

  • Marier M (2010) The sponge: a flexible interface. In: Proceedings of the international conference on new interfaces for musical expression, Sydney, Australia, pp 356–359

    Google Scholar 

  • Marier M (2017) Musique pour éponges: La composition pour un nouvel instrument de musique numérique. D.Mus. thesis, Université de Montréal, Canada

    Google Scholar 

  • Marshall MT, Wanderley MM (2006) Evaluation of sensors as input devices for computer music interfaces. In: Kronland-Martinet R, Voinier T, Ystad S (eds) CMMR 2005—proceedings of computer music modeling and retrieval 2005 conference. Lecture notes in computer science, vol 3902. Springer, Berlin, Heidelberg, pp 130–139

    Google Scholar 

  • Marshall MT, Hartshorn M, Wanderley MM, Levitin DJ (2009) Sensor choice for parameter modulations in digital musical instruments: empirical evidence from pitch modulation. J New Music Res 38(3):241–253

    Article  Google Scholar 

  • Martinet A, Casiez G, Grisoni L (2012) Integrality and separability of multi-touch interaction techniques in 3D manipulation tasks. IEEE Trans Visual Comput Graphics 18(3):369–380

    Article  Google Scholar 

  • Medeiros CB, Wanderley MM (2014) A comprehensive review of sensors and instrumentation methods used in musical expression. Sens J 14(8):13556–13591

    Article  Google Scholar 

  • Miranda ER, Wanderley MM (2006) New digital musical instruments: control and interaction beyond the keyboard. A-R Editions, Madison, USA

    Google Scholar 

  • Pennycook BW (1985) Computer-music interfaces: a survey. ACM Comput Surv 17(2):267–289

    Article  Google Scholar 

  • Rasmussen J (1986) Information processing and human-machine interaction: an approach to cognitive engineering. Elsevier, New York, USA

    Google Scholar 

  • Shneiderman B (2009) Creativity support tools: a grand challenge for HCI researchers. Engineering the user interface. Springer, London, pp 1–9

    Google Scholar 

  • Vertegaal R, Ungvary T, Kieslinger M (1996) Towards a musician’s cockpit: transducers, feedback and musical function. In: Proceedings of the international computer music conference, Hong Kong, China, pp 308–311

    Google Scholar 

  • Wanderley MM, Mackay W (2019) HCI, music and art: an interview with Wendy Mackay. In Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley M (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Wanderley MM, Orio N (2002) Evaluation of input devices for musical expression: borrowing tools from HCI. Comput Music J 26(3):62–76

    Article  Google Scholar 

  • Wanderley MM, Viollet JP, Isart F, Rodet X (2000) On the choice of transducer technologies for specific musical functions. In: Proceedings of the international computer music conference, Berlin, Germany, pp 244–247

    Google Scholar 

  • Wang J, Malloch J, Huot S, Chevalier F, Wanderley MM (2017) Versioning and annotation support for collaborative mapping design. In: Proceedings of the sound and music computing conference, Espoo, Finland

    Google Scholar 

  • Wessel D, Wright M (2002) Problems and prospects for intimate musical control of computers. Comput Music J 26(3):11–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Malloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malloch, J., Garcia, J., Wanderley, M.M., Mackay, W.E., Beaudouin-Lafon, M., Huot, S. (2019). A Design Workbench for Interactive Music Systems. In: Holland, S., Mudd, T., Wilkie-McKenna, K., McPherson, A., Wanderley, M. (eds) New Directions in Music and Human-Computer Interaction. Springer Series on Cultural Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-92069-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92069-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92068-9

  • Online ISBN: 978-3-319-92069-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics