Knowledge Discovery Process for Detection of Spatial Outliers

  • Giovanni Daián RottoliEmail author
  • Hernán Merlino
  • Ramón García-Martínez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10868)


Detection of spatial outliers is a spatial data mining task aimed at discovering data observations that differ from other data observations within its spatial neighborhood. Some considerations that depend on the problem domain and data characteristics have to be taken into account for the selection of the data mining algorithms to be used in each data mining project. This massive amount of possible algorithm combinations makes it necessary to design a knowledge discovery process for detection of local spatial outliers in order to perform this activity in a standardized way. This work provides a proposal for this knowledge discovery process based on the Knowledge Discovery in Database process (KDD) and a proof of concept of this design using real world data.


Spatial outliers Local outliers Spatial data mining Knowledge discovery process Spatial clustering 



The research presented in this paper was partially funded by the PhD Scholarship Program to reinforce R&D&I areas (2016-2020) of the Universidad Tecnológica Nacional, Research Project 80020160400001LA of National University of Lanús, and PIO CONICET-UNLa 22420160100032CO of National Research Council of Science and Technology (CONICET), Argentina. The authors also want to extend their gratitude to Kevin-Mark Bozell Poudereux, for proofreading the translation, and the anonymous reviewers of this work for their valuable comments and suggestions.


  1. 1.
    Araki, S., et al.: Effect of spatial outliers on the regression modelling of air pollutant concentrations: a case study in Japan. Atmos. Environ. 153, 83–93 (2017)CrossRefGoogle Scholar
  2. 2.
    Bakon, M., et al.: A data mining approach for multivariate outlier detection in postprocessing of multitemporal InSAR results. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 10, 2791–2798 (2017)CrossRefGoogle Scholar
  3. 3.
    Michel, B., et al.: Spatial outlier detection in the air quality monitoring network of Normandy (France). In: GRASPA Working Papers (2014)Google Scholar
  4. 4.
    Deepak, P.: Anomaly detection for data with spatial attributes. In: Celebi, M.E., Aydin, K. (eds.) Unsupervised Learning Algorithms, pp. 1–32. Springer, Cham (2016). Scholar
  5. 5.
    Shekhar, S., Chang-Tien, L., Zhang, P.: A unified approach to detecting spatial outliers. GeoInformatica 7(2), 139–166 (2003)CrossRefGoogle Scholar
  6. 6.
    Breunig, M.M., et al.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29(2), 93–104 (2000)CrossRefGoogle Scholar
  7. 7.
    Chawla, S., Sun, P.: SLOM: a new measure for local spatial outliers. Knowl. Inf. Syst. 9(4), 412–429 (2006)CrossRefGoogle Scholar
  8. 8.
    Schubert, E., Weiler, M., Zimek, A.: Outlier detection and trend detection: two sides of the same coin. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW). IEEE (2015)Google Scholar
  9. 9.
    Kamble, B., Doke, K.: Outlier detection approaches in data mining. Int. Res. J. Eng. Technol. (IRJET) 4(3), 634–638 (2017)Google Scholar
  10. 10.
    Ernst, M., Haesbroeck, G.: Comparison of local outlier detection techniques in spatial multivariate data. Data Min. Knowl. Discov. 31(2), 371–399 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tang, B., He, H.: A local density-based approach for outlier detection. Neurocomputing 241, 171–180 (2017)CrossRefGoogle Scholar
  12. 12.
    Du, H., et al.: Novel clustering-based approach for local outlier detection. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE (2016)Google Scholar
  13. 13.
    Liu, X., Lu, C.-T., Chen, F.: Spatial outlier detection: Random walk based approaches. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM (2010)Google Scholar
  14. 14.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)CrossRefGoogle Scholar
  15. 15.
    Liu, Q., et al.: Unsupervised detection of contextual anomaly in remotely sensed data. Remote Sens. Environ. 202, 75–87 (2017)CrossRefGoogle Scholar
  16. 16.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996)CrossRefGoogle Scholar
  17. 17.
    Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Borutaa system for feature selection. Fundam. Inf. 101(4), 271–285 (2010)Google Scholar
  18. 18.
    Guo, D.: Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). Int. J. Geogr. Inf. Sci. 22(7), 801–823 (2008)CrossRefGoogle Scholar
  19. 19.
    Mennis, J., Guo, D.: Spatial data mining and geographic knowledge discovery: an introduction. Comput. Environ. Urban Syst. 33(6), 403–408 (2009)CrossRefGoogle Scholar
  20. 20.
    Rottoli, G.D., Merlino, H., García-Martínez, R.: Knowledge discovery process for description of spatially referenced clusters. In: International Conference on Software Engineering & Knowledge Engineering. Ed. USA KSI Research Inc. and Knowledge Systems Institute, 410415 (2017).
  21. 21.
    De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance. Chemom. Intell. Lab. Syst. 50(1), 1–18 (2000)CrossRefGoogle Scholar
  22. 22.
    Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)CrossRefGoogle Scholar
  23. 23.
    Kuna, H., García-Martínez, R., Villatoro, F.: Automatic outliers fields detection in databases. J. Model. Simul. Syst. 3(1), 14–20 (2012)Google Scholar
  24. 24.
    Quinlan, J.R.: Improved use of continuous attributes in C4. 5. J. Artif. Intell. Res. 4, 77–90 (1996)CrossRefGoogle Scholar
  25. 25.
    Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, New York (2014)Google Scholar
  26. 26.
    Breiman, L., et al.: Classification and Regression Trees. CRC Press, Boca Raton (1984)zbMATHGoogle Scholar
  27. 27.
    Bel, L., et al.: CART algorithm for spatial data: application to environmental and ecological data. Comput. Stat. Data Anal. 53(8), 3082–3093 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Luis, U., Pérez, O.: Table 1: Productivity and rotation lengths for main forest plantation trees in selected tropical countries. Mean Annual Volume Increment of Selected Industrial Forest Plantation Species. Forest Plantations Thematic Papers. Forestry Department of Food and Agriculture Organization of the United Nations (2001)Google Scholar
  29. 29.
    United States Census Bureau: Population, population change and estimated components of population change, 1 April, 2010 to 1 July, 2016. (CO-EST2016-alldata), County Population Totals Datasets: 2010–2016. On-Line: Accessed 17 Oct 2017
  30. 30.
    Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining. In: Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (2000)Google Scholar
  31. 31.
    Martins, S., Pesado, P., García-Martínez, R.: Intelligent systems in modeling phase of information mining development process. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds.) IEA/AIE 2016. LNCS (LNAI), vol. 9799, pp. 3–15. Springer, Cham (2016). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PhD Program on Computer SciencesUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.PhD Scholarship Program to Reinforce R+D+I AreasUniversidad Tecnológica Nacional Ciudad Autónoma de Buenos AiresArgentina
  3. 3.Information Systems Research GroupNational University of LanúsRemedios de EscaladaArgentina

Personalised recommendations