Resolving the Manufacturing Cell Design Problem via Hunting Search

  • Ricardo SotoEmail author
  • Broderick CrawfordEmail author
  • Rodrigo OlivaresEmail author
  • Nicolás PachecoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10868)


The Manufacturing Cell Design Problems consists in divide a production plant into cells, through which the machines and their processed parts are grouped. The main goal is to build an optimal design that reduces the movements of parts among cells. In this paper, we resolve this problem using a recent population-based metaheuristic called Hunting Search. This technique is inspired by the behavior of a herd of animals working together to hunt a prey. The experimental results demonstrate the efficiency of the proposed approach, which reach all global optimums for a set of 27 well-known instances.


Manufacturing cell design problem Optimization Metaheuristic Hunting search 



Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1160455. Broderick Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1171243. Rodrigo Olivares is supported by CONICYT/FONDEF/IDeA/ID16I10449, FONDECYT/STIC-AMSUD/17STIC-03, FONDECYT/MEC/MEC80170097, and Postgraduate Grant Pontificia Universidad Católica de Valparaíso (INF - PUCV 2015-2018).


  1. 1.
    Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29(2), 343–356 (1991)CrossRefGoogle Scholar
  2. 2.
    Burbidge, J.L.: Production flow analysis for planning group technology. J. Oper. Manag. 10(1), 5–27 (1991). Special Issue on Group Technology and Cellular ManufacturingCrossRefGoogle Scholar
  3. 3.
    Kusiak, A.: The part families problem in flexible manufacturing systems. Ann. Oper. Res. 3(6), 277–300 (1985)CrossRefGoogle Scholar
  4. 4.
    Oftadeh, R., Mahjoob, M., Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math. Appl. 60(7), 2087–2098 (2010)CrossRefGoogle Scholar
  5. 5.
    Oftadeh, R., Mahjoob, M.J.: A new meta-heuristic optimization algorithm: Hunting search. In: 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control. IEEE, September 2009Google Scholar
  6. 6.
    Soto, R., Crawford, B., Almonacid, B., Paredes, F.: A migrating birds optimization algorithm for machine-part cell formation problems. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 270–281. Springer, Cham (2015). Scholar
  7. 7.
    Soto, R., et al.: Solving manufacturing cell design problems by using a dolphin echolocation algorithm. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9790, pp. 77–86. Springer, Cham (2016). Scholar
  8. 8.
    Soto, R., Crawford, B., Castillo, C., Paredes, F.: Solving the manufacturing cell design problem via invasive weed optimization. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 115–126. Springer, Cham (2016). Scholar
  9. 9.
    Soto, R., Crawford, B., Vega, E., Johnson, F., Paredes, F.: Solving manufacturing cell design problems using a shuffled frog leaping algorithm. In: Gaber, T., Hassanien, A.E., El-Bendary, N., Dey, N. (eds.) The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. AISC, vol. 407, pp. 253–261. Springer, Cham (2016). Scholar
  10. 10.
    Venugopal, V., Narendran, T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput. Ind. Eng. 22(4), 469–480 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad de ValparaísoValparaísoChile

Personalised recommendations