Skip to main content

Efficient Examination of Soil Bacteria Using Probabilistic Graphical Models

  • Conference paper
  • First Online:
Recent Trends and Future Technology in Applied Intelligence (IEA/AIE 2018)

Abstract

This paper describes a novel approach to study bacterial relationships in soil datasets using probabilistic graphical models. We demonstrate how to access and reformat publicly available datasets in order to apply machine learning techniques. We first learn a Bayesian network in order to read independencies in linear time between bacterial community characteristics. These independencies are useful in understanding the semantic relationships between bacteria within communities. Next, we learn a Sum-Product network in order to perform inference in linear time. Here, inference can be conducted to answer traditional queries, involving posterior probabilities, or MPE queries, requesting the most likely values of the non-evidence variables given evidence. Our results extend the literature by showing that known relationships between soil bacteria holding in one or a few datasets in fact hold across at least 3500 diverse datasets. This study paves the way for future large-scale studies of agricultural, health, and environmental applications, for which data are publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de AraĂºjo, F., de AraĂºjo, A., Figueiredo, M.: Role of plant growth-promoting bacteria in sustainable agriculture. In: Sustainable Agriculture: Technology, Planning and Management. Nova Science Publishers, New York (2011)

    Google Scholar 

  2. Arndt, D., Xia, J., Liu, Y., Zhou, Y., Guo, A., Cruz, J., Sinelnikov, I., Budwill, K., Nesbø, C., Wishart, D.: Metagenassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40(W1), W88–W95 (2012)

    Article  Google Scholar 

  3. Bäckhed, F., Ley, R., Sonnenburg, J., Peterson, D., Gordon, J.: Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Science 307(5717), 1915–1920 (2005)

    Article  Google Scholar 

  4. Bai, Y., Zhou, X., Smith, D.: Enhanced soybean plant growth resulting from coinoculation of bacillus strains with Bradyrhizobium japonicum. Crop Sci. 43(5), 1774–1781 (2003)

    Article  Google Scholar 

  5. Brandt, L., Aroniadis, O., Mellow, M., Kanatzar, A., Kelly, C., Park, T., Stollman, N., Rohlke, F., Surawicz, C.: Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am. J. Gastroenterol. 107, 1079–1087(2012)

    Google Scholar 

  6. Butz, C., Oliveira, J., dos Santos, A.: On learning the structure of sum-product networks. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2997–3004 (2017)

    Google Scholar 

  7. Cooper, G.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42(2–3), 393–405 (1990)

    Article  MathSciNet  Google Scholar 

  8. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    MATH  Google Scholar 

  9. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley (2012)

    Google Scholar 

  10. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artif. Intell. 60(1), 141–153 (1993)

    Article  MathSciNet  Google Scholar 

  11. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  12. Druzdzel, M.: SMILE: Structural modeling, inference, and learning engine and genie: a development environment for graphical decision-theoretic models (1999)

    Google Scholar 

  13. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley (2012)

    Google Scholar 

  14. Gens, R., Domingos, P.: Learning the structure of sum-product networks. In: Proceedings of the Thirtieth International Conference on Machine Learning, pp. 873–880 (2013)

    Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  16. Gouda, S., Kerry, R., Das, G., Paramithiotis, S., Shin, H.S., Patra, J.: Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206, 131–140 (2017)

    Article  Google Scholar 

  17. Hastie, T., Tibshirani, R., Friedman, J.: Overview of supervised learning. In: The Elements of Statistical Learning. Springer Series in Statistics, pp. 9–41. Springer, New York (2009). https://doi.org/10.1007/978-0-387-21606-5_2

  18. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  19. Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., Wilkening, J., Edwards, R.: The metagenomics rast server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 9(1), 386 (2008)

    Article  Google Scholar 

  20. Neapolitan, R.: Learning Bayesian Networks. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  21. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1988)

    Google Scholar 

  22. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp. 337–346 (2011)

    Google Scholar 

  23. Riesenfeld, C., Schloss, P., Handelsman, J.: Metagenomics: Genomic analysis of microbial communities. Annu. Rev. Genet. 38(1), 525–552 (2004)

    Article  Google Scholar 

  24. Tokala, R., Strap, J., Jung, C., Crawford, D., Salove, M., Deobald, L., Bailey, J., Morra, M.: Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus wyec108 and the pea plant (Pisum sativum). Appl. Environ. Microbiol. 68(5), 2161–2171 (2002)

    Article  Google Scholar 

  25. Vergari, A., Di Mauro, N., Esposito, F.: Simplifying, regularizing and strengthening sum-product network structure learning. In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 343–358 (2015)

    Google Scholar 

  26. Woolf, B.: The log likelihood ratio test (the G-test). Ann. Hum. Genet. 21(4), 397–409 (1957)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory J. Butz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Butz, C.J., dos Santos, A.E., Oliveira, J.S., Stavrinides, J. (2018). Efficient Examination of Soil Bacteria Using Probabilistic Graphical Models. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds) Recent Trends and Future Technology in Applied Intelligence. IEA/AIE 2018. Lecture Notes in Computer Science(), vol 10868. Springer, Cham. https://doi.org/10.1007/978-3-319-92058-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92058-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92057-3

  • Online ISBN: 978-3-319-92058-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics