Closed-Loop Push Recovery for an Inexpensive Humanoid Robot

  • Amirhossein Hosseinmemar
  • Jacky Baltes
  • John AndersonEmail author
  • Meng Cheng Lau
  • Chi Fung Lun
  • Ziang Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10868)


Active balancing in autonomous humanoid robots is a challenging task due to the complexity of combining a walking gait with dynamic balancing, vision and high-level behaviors. Humans not only walk successfully over even and uneven terrain, but can recover from the interaction of external forces such as impacts with obstacles and active pushes. While push recovery has been demonstrated successfully in expensive robots, it is more challenging with robots that are inexpensive, with limited power in actuators and less accurate sensing. This work describes a closed-loop control method that uses an accelerometer and gyroscope to allow an inexpensive humanoid robot to actively balance while walking and recover from pushes. An experiment is performed to test three hand-tuned closed-loop control configurations; using only a the gyroscope, only the accelerometer, and a combination of both sensors to recover from pushes. Experimental results show that the combination of gyroscope and accelerometer outperforms the other methods with 100% recovery from a light push and 70% recovery from a strong push.


Push recovery Humanoid robot Autonomous active balancing Centroidal moment pivot 


  1. 1.
    Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Aral, H., Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Trans. Robot. Autom. 17(3), 280–289 (2001)CrossRefGoogle Scholar
  2. 2.
    Stephens, B.: Humanoid push recovery. In: Proceedings of Humanoids-2007, Pittsburgh, PA, pp. 589–595. IEEE (2007)Google Scholar
  3. 3.
    Stephens, B.J., Atkeson, C.G.: Push recovery by stepping for humanoid robots with force controlled joints. In: Proceedings of Humanoids-2010, Nashville, TN, pp. 52–59 (2010)Google Scholar
  4. 4.
    Kim, J.Y., Park, I.W., Oh, J.H.: Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intell. Robot. Syst. 48, 457–484 (2007)CrossRefGoogle Scholar
  5. 5.
    Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T., Marion, P., Tedrake, R.: Optimization-based locomotion planning, estimation, and control design for Atlas. Auton. Robots 40(3), 429–455 (2016)CrossRefGoogle Scholar
  6. 6.
    Baltes, J., Tu, K.Y., Sadeghnejad, S., Anderson, J.: HuroCup: competition for multi-event humanoid robot athletes. Knowl. Eng. Rev. 32, 1–14 (2017)CrossRefGoogle Scholar
  7. 7.
    Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: Proceedings of Humanoids-2006, Genoa, Italy (2006)Google Scholar
  8. 8.
    Lee, S.H., Goswami, A.: Reaction Mass Pendulum (RMP): an explicit model for centroidal angular momentum of humanoid robots. In: Proceedings of ICRA-2007, Rome, Italy, pp. 4667–4672 (2007)Google Scholar
  9. 9.
    Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F., Yokoi, K.: Biped walking stabilization based on linear inverted pendulum tracking. In: Proceedings of IROS 2010, pp. 4489–4496. IEEE, Taipei (2010)Google Scholar
  10. 10.
    Vukobratović, M.: How to control artificial anthropomorphic systems. IEEE Trans. Syst. Man Cybern. 5, 497–507 (1973)CrossRefGoogle Scholar
  11. 11.
    Yi, S.J., Zhang, B.T., Hong, D., Lee, D.D.: Learning full body push recovery control for small humanoid robots. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China (2011)Google Scholar
  12. 12.
    Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: Proceedings of ICRA-98, pp. 1321–1326 (1998)Google Scholar
  13. 13.
    Morisawa, M., Kanehiro, F., Kaneko, K., Mansard, N., Sola, J., Yoshida, E., Yokoi, K., Laumond, J.P.: Combining suppression of the disturbance and reactive stepping for recovering balance. In: Proceedings of IROS 2010, Taipei, pp. 3150–3156 (2010)Google Scholar
  14. 14.
    Cho, B.K., Park, S.S., Oh, J.H.: Stabilization of a hopping humanoid robot for a push. In: Proceedings of IROS 2010, Taipei, pp. 60–65 (2010)Google Scholar
  15. 15.
    Missura, M., Behnke, S.: Omnidirectional capture steps for bipedal walking. In: Proceedings of Humanoids-2013, Atlanta, GA, pp. 401–408 (2013)Google Scholar
  16. 16.
    Assman, T., Nijmeijer, H., Takanishi, A., Hashimoto, K.: Biomechanically motivated lateral biped balancing using momentum control. Technical report DC 2011.035, Eindhoven University of Technology (2012)Google Scholar
  17. 17.
    Graf, C., Röfer, T.: A center of mass observing 3D-LIPM gait for the RoboCup standard platform league humanoid. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 102–113. Springer, Heidelberg (2012). Scholar
  18. 18.
    Stephens, B.: Push recovery control for force-controlled humanoid robots. Ph.D. thesis, Carnegie Mellon University Pittsburgh, Pennsylvania, USA (2011)Google Scholar
  19. 19.
    Missura, M., Behnke, S.: Online learning of foot placement for balanced bipedal walking. In: Proceedings of Humanoids-2014, Madrid, Spain, pp. 322–328 (2014)Google Scholar
  20. 20.
    Tajima, R., Honda, D., Suga, K.: Fast running experiments involving a humanoid robot. In: Proceedings of ICRA-2009, pp. 1571–1576 (2009)Google Scholar
  21. 21.
    Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, J.W.: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30(9), 1170–1193 (2011)CrossRefGoogle Scholar
  22. 22.
    Yun, S.K., Goswami, A.: Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery. In: Proceedings of IROS-2011, San Francisco, CA (2011)Google Scholar
  23. 23.
    Lee, S.H., Goswami, A.: Ground reaction force control at each foot: a momentum-based humanoid balance controller for non-level and non-stationary ground. In: Proceedings of IROS-2010, Taipei, pp. 3157–3162 (2010)Google Scholar
  24. 24.
    Hofmann, A.: Robust execution of bipedal walking tasks from biomechanical principles. Ph.D. thesis, Massachusetts Institute of Technology (2006)Google Scholar
  25. 25.
  26. 26.
    Anderson, J., Baltes, J., Tu, K.Y.: Improving robotics competitions for real-world evaluation of AI. In: Proceedings of the AAAI Spring Symposium on Experimental Design for Real-World Systems, Stanford, CA, March 2009Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amirhossein Hosseinmemar
    • 1
  • Jacky Baltes
    • 2
  • John Anderson
    • 1
    Email author
  • Meng Cheng Lau
    • 1
  • Chi Fung Lun
    • 1
  • Ziang Wang
    • 1
  1. 1.Autonomous Agents Laboratory, Department of Computer ScienceUniversity of ManitobaWinnipegCanada
  2. 2.Department of Electrical EngineeringNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations