Advertisement

Partition Crossover Evolutionary Algorithm for the Team Orienteering Problem with Time Windows

  • Ibtihel GhobberEmail author
  • Takwa Tlili
  • Saoussen Krichen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10868)

Abstract

The rapid evolution in tourism domain and new technologies make the search for the destination and site information for the tourists very difficult. In operations research field, this problem is modeled as Tourist Trip Design Problem (TTDP) which is about finding an optimal path-planning solution for tourists in order to visit multiple Points Of Interests (POIs). This paper addresses the team orienteering problem with time windows (TOPTW) that is an extension of TTDP. We apply for the first time the evolutionary algorithm based on partition crossover (EAPX) for solving the TOPTW. This approach is tested using a set of benchmarks then is compared to state-of-the-art algorithms to evaluate its performance. The results indicate the effectiveness of this method in solving the TOPTW.

Keywords

Team orienteering problem with time windows Tourist Trip Design Problem Partition crossover Evolutionary algorithm Meta-heuristics 

References

  1. Cura, T.: An artificial bee colony algorithm approach for the team orienteering problem with time windows. Comput. Ind. Eng. 74, 270–290 (2014)CrossRefGoogle Scholar
  2. Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G.: A survey on algorithmic approaches for solving tourist trip design problems. J. Heuristics 20(3), 291–328 (2014)CrossRefGoogle Scholar
  3. Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R.W.: The team orienteering problem with time windows: an LP-based granular variable neighborhood search. Eur. J. Oper. Res. 220(1), 15–27 (2012)MathSciNetCrossRefGoogle Scholar
  4. Montemanni, R., Gambardella, L.M.: An ant colony system for team orienteering problems with time windows. Found. Comput. Decis. Sci. 34(4), 287 (2009)zbMATHGoogle Scholar
  5. Ryan, D.M., Hjorring, C., Glover, F.: Extensions of the petal method for vehicle routeing. J. Oper. Res. Soc. 44(3), 289–296 (1993)CrossRefGoogle Scholar
  6. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Iterated local search for the team orienteering problem with time windows. Comput. Oper. Res. 36(12), 3281–3290 (2009a)CrossRefGoogle Scholar
  7. Vansteenwege, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Metaheuristics for tourist trip planning. In: Sörensen, K., Sevaux, M., Habenicht, W., Geiger, M. (eds.) Metaheuristics in the Service Industry, vol. 624, pp. 15–31. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00939-6_2CrossRefGoogle Scholar
  8. Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover for the traveling salesman problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 915–922. ACM (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ibtihel Ghobber
    • 1
    Email author
  • Takwa Tlili
    • 1
  • Saoussen Krichen
    • 1
  1. 1.LARODEC LaboratoryInstitut Supérieur de Gestion Tunis, Université de TunisTunisTunisia

Personalised recommendations