Advertisement

A Fingertip Glove with Motor Rotational Acceleration Enables Stiffness Perception When Grasping a Virtual Object

  • Vibol YemEmail author
  • Hiroyuki Kajimoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10904)

Abstract

We developed a 3D virtual reality system comprising two fingertip gloves and a finger-motion capture device to deliver a force feedback sensation when grasping a virtual object. Each glove provides a pseudo-force sensation to a fingertip via asymmetric vibration of a DC motor. In this paper, we describe our algorithms for providing this illusionary force feedback, as well as visual feedback, which involved deforming the shape of a virtual object. We also conducted an experiment to investigate whether presenting pseudo-force sensation to the tip of the thumb and index finger during grasping enabled participants to interpret the material stiffness of a virtual object. We changed the initial vibration amplitude, which represents the reaction force when the thumb and the index finger initially contact the surface of an object, and asked participants to match each haptic feedback condition with a visual feedback condition. We found that most participants chose the rubber or wood material (task 1) and highly deformable material (task 2) when the initial vibration was weak, and chose the wood or aluminum (task 1) and non-deformable material (task 2) when the initial vibration was strong.

Keywords

Fingertip glove Stiffness perception Motor-rotational acceleration VR interaction 

Notes

Acknowledgement

This work was partly supported by JSPS KAKENHI Grant Number JP17F17351, JP15H05923 (Grant-in-Aid for Scientific Research on Innovative Areas, “Innovative SHITSUKSAN Science and Technology”), and the JST-ACCEL Embodied Media Project.

References

  1. 1.
    Ma, K.Z., Ben-Tzvi, P.: RML Glove - an exoskeleton glove mechanism with haptics feedback. IEEE/ASME Trans. Mechatron. 20(2), 641–652 (2015)CrossRefGoogle Scholar
  2. 2.
    Choi, I., Hawkes, E.W., Christensen, D.L., Ploch, C.J., Follmer, S.: Wolverine: a wearable haptic interface for grasping in virtual reality. In: Proceedings of the IEEE/RSJ Intelligent Robots and Systems (IROS), pp. 986–993 (2016)Google Scholar
  3. 3.
    Liu, J., Song, A., Zhang, H.: Research on stiffness display perception of virtual soft object. In: Proceedings of the IEEE International Conference on Information Acquisition (ICIA), pp. 558–562 (2007)Google Scholar
  4. 4.
    Nojima, T., Sekiguchi, D., Inami, M., Tachi, S.: The SmartTool: A system for augmented reality of haptics. In: Proceedings of the IEEE Virtual Reality (VR), pp. 67–72 (2002)Google Scholar
  5. 5.
    Yem, V., Okazaki R., Kajimoto, H.: Vibrotactile and pseudo force presentation using motor rotational acceleration. In: Proceedings of the Haptics Symposium, pp. 47–51 (2016)Google Scholar
  6. 6.
    Sakuragi, R., Yem, V., Kajimoto, H.: Pseudo force presentation to multiple fingers by asymmetric rotational vibration using a motor: consideration in grasping posture. In: Proceedings of the World Haptics Conference, pp. 305–309 (2017)Google Scholar
  7. 7.
    Martínez, J., García, A., Oliver, M., Molina, J.P., González, P.: Identifying virtual 3D geometric shapes with a vibrotactile glove. IEEE Comput. Graphics Appl. 36(1), 42–51 (2016)CrossRefGoogle Scholar
  8. 8.
    Muramatsu, Y., Niitsuma, M., Thomessen, T.: Perception of tactile sensation using vibrotactile glove interface. In: IEEE Cognitive Infocommunications (CogInfoCom), pp. 621–626 (2012)Google Scholar
  9. 9.
    Murray, A.M., Klatzky, R.L., Khosla, P.K.: Psychophysical characterization and testbed validation of a wearable vibrotactile glove for telemanipulation. Presence Teleoperators Virtual Environ. 12(2), 156–182 (2003)CrossRefGoogle Scholar
  10. 10.
    McNeely, W.A., Puterbaugh, K.D., Troy, J.J.: Six degree-of-freedom haptic rendering using voxel sampling. Proceedings of the ACM SIGGRAPH, pp. 401–408 (1999)Google Scholar
  11. 11.
    Kim, S., Hasegawa, S., Koike, Y., Sato, M.: Tension based 7-DOF force feedback device: SPIDAR-G. In: Transactions on Control, Automation, and Systems Engineering, vol. 4, no. 1, pp. 9–16 (2002)Google Scholar
  12. 12.
    Endo, T., Kawaski, H., Nouri, T., Doi, Y., Yoshida, T., Ishigure, Y., Shimomura, H., Matsumura, M., Koketsu, K.: Five-fingered haptic interface robot: HIRO III. In: Proceedings of the Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 458–463 (2009)Google Scholar
  13. 13.
    Minamizawa, K., Kajimoto, H., Kawakami, N., Tachi, S.: Wearable haptic display to present gravity sensation—preliminary observations and device design. In: Proceedings of the IEEE World Haptics Conference (2007)Google Scholar
  14. 14.
    Leonardis, D., Solazzi, M., Bortone, I., Frisoli, A.: A wearable fingertip haptic device with 3 DoF asymmetric 3-RSR kinematics. In: Proceedings of the IEEE World Haptics Conference, pp. 388–393 (2015)Google Scholar
  15. 15.
    Tsetserukou, D., Hosokawa, S., Terashima, K.: LinkTouch: a wearable haptic device with five-bar linkage mechanism for presentation of two-DOF force feedback at the fingerpad. Proceedings of the IEEE Haptics Symposium, pp. 307–312 (2014)Google Scholar
  16. 16.
    Amemiya, T., Gomi, H.: Distinct pseudo-attraction force sensation by a thumb-sized vibration that oscillates asymmetrically. In: Proceedings of the EuroHaptics, Part II, pp. 88–95 (2014)Google Scholar
  17. 17.
    Rekimoto, J.: Traxion: a tactile interaction device with virtual force sensation. In: Proceedings of the ACM Symposium User Interface Software and Technology (UIST 2013), pp. 427–432 (2013)Google Scholar
  18. 18.
    Amemiya, T., Ando, H., Maeda, T.: Virtual force display: direction guidance using asymmetric acceleration via periodic translational motion. In: Proceedings of the World Haptics Conference, pp. 619–622 (2005)Google Scholar
  19. 19.
    Tanabe, T., Yano, H., Iwata, H.: Properties of proprioceptive sensation with a vibration speaker-type non-grounded haptic interface. In: Proceedings of the Haptics Symposium, pp. 21–26 (2016)Google Scholar
  20. 20.
    Culbertson, H., Walker, J.M., Okamura, A.M.: Modeling and design of asymmetric vibrations to induce ungrounded pulling sensation through asymmetric skin displacement. In: Proceedings of the Haptics Symposium, pp. 27–33 (2016)Google Scholar
  21. 21.
    Yao, H.Y., Haywad, V.: Design and analysis of a recoil-type vibrotactile transducer. J. Acoust. Soc. Am. 128, 619–627 (2010)CrossRefGoogle Scholar
  22. 22.
    Tactile Labs Inc. http://tactilelabs.com/. Accessed 9 Feb 2018
  23. 23.
    Alps Electric Co. http://www.alps.com/e/. Accessed 9 Feb 2018

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The University of Electro-CommunicationsChofuJapan

Personalised recommendations