Advertisement

Airflow for Body Motion Virtual Reality

  • Masato Kurosawa
  • Yasushi IkeiEmail author
  • Yujin Suzuki
  • Tomohiro Amemiya
  • Koichi Hirota
  • Michiteru Kitazaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10904)

Abstract

The present study investigates the characteristics of cutaneous sensation evoked by airflow to the face of the seated and standing user during the real and virtual walking motion. The effect of airflow on enhancement of a virtual reality walk was demonstrated. The stimulus condition provided in the evaluation involved the airflow, the visual, and the vestibular presentations, and the treadmill and walk-in-place real motions. The result suggested that the cutaneous sensation of air flow was suppressed while the movement was performed actively with visual information provided. The equivalent speed of air flow for the participants was 5 ~ 29% lowered from the air flow speed in the real walk.

Keywords

Airflow Cutaneous sensation Virtual walk 

Notes

Acknowledgments

This research was supported by SCOPE project 141203019 at MIC and JSPS KAKENHI Grant Number JP26240029, and a past funding of NICT in Japan.

References

  1. 1.
    Heilig, M.L.: Sensorama Simulator. US Patent 3,050,870 (1962)Google Scholar
  2. 2.
    Kulkarni, S., Fisher, C., Pardyjak, E., Minor, M., Hollerbach, J.: Wind display device for locomotion interface in a virtual environment. In: Proceedings - 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2009, pp. 184–189 (2009)Google Scholar
  3. 3.
    Moon, T., Kim, G.J.: Design and evaluation of a wind display for virtual reality. In: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 122–128 (2004)Google Scholar
  4. 4.
    Ogi, T., Hirose, M.: Effect of multisensory integration for scientific data sensualization. JSME Int. J. Ser. C: Dyn. Control Robot. Des. Manuf. 39(2), 411–417 (1996)Google Scholar
  5. 5.
    Sodhi, R., Poupyrev, I., Glisson, M., Israr, A.: AIREAL: interactive tactile experiences in free air. ACM Trans. Graph. (TOG) 32(4), 134 (2013)CrossRefGoogle Scholar
  6. 6.
    Gupta, S., Morris, D., Patel, S., Tan, D.: AirWave: non-contact haptic feedback using air vortex rings. In: Ubicomp 2013, pp. 1–11 (2013)Google Scholar
  7. 7.
    Tsalamlal, M.Y., Issartel, P., Ouarti, N., Ammi, M.: HAIR: HAptic feedback with a mobile AIR jet. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2699–2706 (2014)Google Scholar
  8. 8.
    Tsalamlal, M.Y., Ouarti, N., Ammi, M.: Psychophysical study of air jet based tactile stimulation. In: 2013 World Haptics Conference, WHC 2013, pp. 639–644 (2013)Google Scholar
  9. 9.
    Yanagida, Y., Kawato, S., Noma, H., Tomono, A., Tetsutani, N.: Air cannon design for projection-based olfactory display. In: Proceedings of the 13th International Conference on Artificial Reality and Teleexistence, ICAT 2003, pp. 136–142 (2003)Google Scholar
  10. 10.
    Matsukura, H., Nihei, T., Ishida, H.: Multi-sensorial field display: presenting spatial distribution of airflow and odor. In: Proceedings – IEEE Virtual Reality, pp. 119–122 (2011)Google Scholar
  11. 11.
    Feng, M., Dey, A., Lindeman, R.W.: An initial exploration of a multi-sensory design space: tactile support for walking in immersive virtual environments. In: Proceedings of IEEE 3D User Interfaces (3DUI) (2016)Google Scholar
  12. 12.
    Cardin, S., Vexo, F., Thalmann, D.: Head mounted wind. In: Computer Animation and Social Agents (CASA2007), pp. 101–108 (2007)Google Scholar
  13. 13.
    Deligiannidis, L., Jacob, R.J.K.: The VR scooter: wind and tactile feedback improve user performance. In: Proceedings of IEEE Symposium on 3D User Interfaces 2006, 3DUI 2006, pp. 143–150 (2006)Google Scholar
  14. 14.
    Nakano, T., Saji, S., Yanagida, Y.: Indicating wind direction using a fan-based wind display. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7283, pp. 97–102. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31404-9_17CrossRefGoogle Scholar
  15. 15.
    Rheiner, M.: Birdly an attempt to fly. In: ACM SIGGRAPH 2014 Emerging Technologies (SIGGRAPH 2014), vol. 3, pp. 1. ACM, New York (2014)Google Scholar
  16. 16.
    Seno, T., Ogawa, M., Ito, H., Sunaga, S.: Consistent air flow to the face facilitates vection. Perception 40, 1237–1240 (2011)CrossRefGoogle Scholar
  17. 17.
    Murata, K., Seno, T., Ozawa, Y., Ichihara, S.: Self-motion perception induced by cutaneous sensation caused by constant wind. Psychology 5, 1777–1782 (2014)CrossRefGoogle Scholar
  18. 18.
    Ikei, Y., Abe, K., Hirota, K., Amemiya, T.: A multisensory VR system exploring the ultra-reality. In: Proceedings of 18th International Conference on Virtual Systems and Multimedia (VSMM2012), pp. 71–78 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Masato Kurosawa
    • 1
  • Yasushi Ikei
    • 1
    Email author
  • Yujin Suzuki
    • 1
  • Tomohiro Amemiya
    • 2
  • Koichi Hirota
    • 3
  • Michiteru Kitazaki
    • 4
  1. 1.Tokyo Metropolitan UniversityTokyoJapan
  2. 2.NTT Communication Science LaboratoriesAtsugiJapan
  3. 3.University of Electro-CommunicationsTokyoJapan
  4. 4.Toyohashi University of TechnologyToyohashiJapan

Personalised recommendations