The Lessons of Google Glass: Aligning Key Benefits and Sociability

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10904)


This article presents a case study of the user experience of Google Glass when it was initially introduced in 2013. By applying the combined methods of on-line data research, semantic network analysis and field research, it is argued that awkwardness of form factor and use, and failures of Google Glass’s user interface explain the low acceptability of the device. From a methodological perspective that combines big data analysis and qualitative research, this article discusses the user needs and preferences that should inform development of new tech.


Google Glass Big data research Semantic network analysis UX 


  1. 1.
    Shin, D.: User value design for cloud courseware system. Behav. Inf. Technol. 34(5), 508 (2015)CrossRefGoogle Scholar
  2. 2.
    Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Transaction, London (1967)Google Scholar
  3. 3.
    Moscovici, S.: Social Representations: Explorations in Social Psychology. Polity Press, Cambridge (2000)Google Scholar
  4. 4.
    Marková, I.: The making of the theory of social representations. Cadernos de Pesquisa 47(163), 368 (2017)CrossRefGoogle Scholar
  5. 5.
    Rhie, Y., Lim, J., Yun, M.: Evaluating representativeness of qualitative text data in identifying UX issues. Int. J. Hum.-Comput. Interact. 33(11), 868–881 (2017)CrossRefGoogle Scholar
  6. 6.
    Chung, J., Nah, K., Kim, S.: Study on design research using semantic network analysis. J. Ergon. Soc. Korea 34(4), 563–581 (2015)CrossRefGoogle Scholar
  7. 7.
    Kim, L., Kim, N.: Connecting opinion, belief and value: semantic network analysis of a UK public survey on embryonic stem cell research. J. Sci. Commun. 14(1) (2015)Google Scholar
  8. 8.
    Kim, L.: Denotation and connotation in public representation: semantic network analysis of Hwang supporters’ internet dialogues. Pub. Underst. Sci. 22(3), 335–350 (2013)CrossRefGoogle Scholar
  9. 9.
    Krippendorff, K.: Content Analysis: An Introduction to its Methodology. Sage, Thousand Oaks (2004)Google Scholar
  10. 10.
    Carley, K.: Coding choices for textual analysis: a comparison of content analysis and map analysis. Sociol. Methodol. 23, 75–126 (1993)CrossRefGoogle Scholar
  11. 11.
    De Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek. Cambridge University Press, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Serrano, M.A., Boguñá, M., Vespignani, A.: Extracting the multiscale backbone of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 106(16), 6483–6488 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ars PraxiaSeoulSouth Korea

Personalised recommendations