Advertisement

A General Framework for Formulating Adjustable Autonomy of Multi-agent Systems by Fuzzy Logic

  • Salama A. MostafaEmail author
  • Rozanawati Darman
  • Shihab Hamad Khaleefah
  • Aida Mustapha
  • Noryusliza Abdullah
  • Hanayanti Hafit
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 96)

Abstract

Autonomous agents and multi-agent systems significantly facilitate solutions to many complex and distributed problem-solving environments due to the agents’ various capabilities. These environments comprise uncertain, high dynamism or irregular workload that might prone the agents to make decisions that lead to undesirable outcomes. This paper proposes a Fuzzy Logic-based Adjustable Autonomy (FLAA) as a general framework for managing the autonomy of multi-agent systems that operate in complex environments. The framework includes a fuzzy logic technique to quantitatively measure and distribute the autonomy among operators (autonomous agents and humans) based on adjustable autonomy attributes. The FLAA framework dynamically changes the autonomy of the operators to directions that meets their ability to perform and produce desirable outcomes. The technical application of the framework is demonstrated by an example scenario. The scenario illustrates the competence performance of the collaborative operators. The advantages of using the framework are to capture relationships between discrete autonomy attributes, quantify adjustable autonomy and manage adjustable autonomous multi-agent systems.

Keywords

Autonomous agent Multi-agent system Adjustable autonomy Fuzzy logic 

Notes

Acknowledgements

This project is sponsored by the postdoctoral grant of Universiti Tun Hussein Onn Malaysia (UTHM) under Vot D004 and partially supported by the Tier 1 research grant scheme of UTHM under Vot U893.

References

  1. 1.
    Mostafa, S.A., Ahmad, M.S., Mustapha, A.: Adjustable autonomy: a systematic literature review. Artif. Intell. Rev. 1–38 (2017)Google Scholar
  2. 2.
    Hexmoor, H., Mclaughlan, B.: Computationally adjustable autonomy. Scalable Comput. Pract. Exp. 8(1), 41–48 (2001)Google Scholar
  3. 3.
    Jaafar, J., McKenzie, E.: Decision-making method using fuzzy logic for autonomous agent navigation. Electron. J. Comput. Sci. Inf. Technol. 3(1), 8–18 (2011)Google Scholar
  4. 4.
    Mostafa, S., Gunasekaran, S.S., Ahmad, M.S., Ahmad, A., Annamalai, M., Mustapha, A.: Defining tasks and actions complexity-levels via their deliberation intensity measures in the layered adjustable autonomy model. In: International Conference on Intelligent Environments (IE), pp. 52–55. IEEE (2014)Google Scholar
  5. 5.
    Bradshaw, J.M., Feltovich, P.J., Jung, H., Kulkarni, S., Taysom, W., Uszok, A.: Dimensions of adjustable autonomy and mixed-initiative interaction. In: International Workshop on Computational Autonomy, pp. 17–39. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Mostafa, S.A., Mustapha, A., Mohammed, M.A., Ahmad, M.S., Mahmoud, M.A.: A fuzzy logic control in adjustable autonomy of a multi-agent system for an automated elderly movement monitoring application. Int. J. Med. Inform. 112, 173–184 (2018)CrossRefGoogle Scholar
  7. 7.
    Mostafa, S.A., Ahmad, M.S., Ahmad, A., Annamalai, M., Mustapha, A.: A dynamic measurement of agent autonomy in the layered adjustable autonomy model. In: Studies in Computational Intelligence, vol. 513, pp. 25–35. Springer, Cham (2014)CrossRefGoogle Scholar
  8. 8.
    Mahmoud, M.A., Ahmad, M.S., Yusoff, M.Z.M., Idrus, A.: Automated multi-agent negotiation framework for the construction domain. In: Distributed Computing and Artificial Intelligence, pp. 203–210. Springer, Cham (2015)CrossRefGoogle Scholar
  9. 9.
    Jassim, O.A., Mahmoud, M.A., Ahmad, M.S.: A multi-agent framework for research supervision management. In: Distributed Computing and Artificial Intelligence, pp. 129–136. Springer, Cham (2015)CrossRefGoogle Scholar
  10. 10.
    Gharbi, A., Samir, B.A.: Fuzzy logic multi-agent system. Int. J. Comput. Sci. Inf. Technol. 6(4), 273 (2014)Google Scholar
  11. 11.
    Shamshirb, S., Kalantari, S., Bakhsh, Z.: Designing a smart multi-agent system based on fuzzy logic to improve the gas consumption pattern. Sci. Res. Essays 5(6), 592–605 (2010)Google Scholar
  12. 12.
    Couceiro, M.S., Tenreiro Machado, J.A., Rocha, R.P., Ferreira, N.M.: A fuzzified systematic adjustment of the robotic Darwinian PSO. Robot. Auton. Syst. 60, 1625–1639 (2012)CrossRefGoogle Scholar
  13. 13.
    Lau, H.C., Agussurja, L., Thangarajoo, R.: Real-time supply chain control via multi-agent adjustable autonomy. Comput. Oper. Res. 35(11), 3452–3464 (2008)CrossRefGoogle Scholar
  14. 14.
    Mostafa, S.A., Ahmad, M.S., Mustapha, A., Mohammed, M.A.: Formulating layered adjustable autonomy for unmanned aerial vehicles. Int. J. Intell. Comput. Cybern. 10(4), 430–450 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Salama A. Mostafa
    • 1
    Email author
  • Rozanawati Darman
    • 1
  • Shihab Hamad Khaleefah
    • 2
  • Aida Mustapha
    • 1
  • Noryusliza Abdullah
    • 1
  • Hanayanti Hafit
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyUniversiti Tun Hussein Onn MalaysiaParit RajaMalaysia
  2. 2.Faculty of Computer ScienceAl Maarif University CollegeAnbarIraq

Personalised recommendations