Advertisement

Multi-Agent System Model for Diagnosis of Personality Types

  • Margarita Ramírez RamírezEmail author
  • Hilda Beatriz Ramírez Moreno
  • Esperanza Manrique Rojas
  • Carlos Hurtado
  • Sergio Octavio Vázquez Núñez
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 96)

Abstract

In this paper we make the proposal of a multi-agent system model that makes the diagnosis of personality types presented by individuals based on established questionnaires.

This proposal uses technology of intelligent agents to make the diagnosis or identification of personality types through an approach that is different from traditional approaches, which is based on the analysis of the knowledge base and the information captured from the user with concrete actions that the agents resolve through their communication capabilities adapting to the needs of the environment.

To make a diagnosis, the agents use reasoning rules stored in a knowledge base and process information received by the agents of their environment.

Keywords

Multi-Agent systems Information technologies Diagnosis 

References

  1. 1.
    Ramírez, M.R., Moreno, H.B.R., Millán, N.C.O., Núñez, S.O.V., Garza, A.A.: Big Data and health “clinical records” Smart Innovation, Systems and Technologies. Chen, Y.-W. et al. (eds.), vol. 71, pp. 12–18, Springer, Cham (2018)Google Scholar
  2. 2.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)CrossRefGoogle Scholar
  3. 3.
    Sycara, K.P., Roth, S.F., Sadeh, N., Fox, M.S.: Resource Allocation in Distributed Factory Scheduling. In: Zweben, M., Fox, M.S. (eds.) Intelligent Scheduling, pp. 29–40. Morgan Kaufman Publishers, San Francisco (1991). Accessed 06 Feb 2018. http://www.cs.cmu.edu/afs/cs/user/katia/www/katia-home.htmlGoogle Scholar
  4. 4.
    Jiménez, J.: Un Modelo de Planificación Instruccional usando Razonamiento Basado en Casos en Sistemas Multi-Agente para entornos integrados de Sistemas Tutoriales Inteligentes y Ambientes Colaborativos de Aprendizaje.Tesis Doctoral. Universidad Nacional de Colombia (2006)Google Scholar
  5. 5.
    UNAL: Universidad Nacional de Colombia. Inteligencia Artificial Distribuida, Disponible en. Consultado Abril de 2012. http://www.virtual.unal.edu.co/cursos/ingenieria/2001394/docs_curso/contenido.html
  6. 6.
    Reyes, V., Rivera, G.M.I.: Prediagnóstico de enfermedades neurológicas a través de un sistema multiagente Ciencias ComputacionalesGoogle Scholar
  7. 7.
    Jiménez, A.: Ontologías para comunicación entre agentes Disponible en. Consultado el 26 de marzo de 2011. http://alfonsojimenez.com/computers/ontologiaspara-comunicacion-entre-agentes/
  8. 8.
    Cruz, J. et al.: Sistema Multiagentes para el Monitoreo Inteligente. In: Müller-Karger C., Wong S., La Cruz A. (eds.) IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health. IFMBE Proceedings, vol 18. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Liu, G., Lee, K.Y., Jordan, H.F.: TDM and TWDM de Brujin networks and suffflenets for optical communications. IEEE Trans. Comput. 46, 695–701 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Margarita Ramírez Ramírez
    • 1
    Email author
  • Hilda Beatriz Ramírez Moreno
    • 1
  • Esperanza Manrique Rojas
    • 1
  • Carlos Hurtado
    • 1
  • Sergio Octavio Vázquez Núñez
    • 1
  1. 1.Universidad Autónoma de Baja CaliforniaBaja CaliforniaMexico

Personalised recommendations