Location-Aware Group Preference Queries in Social-Networks

  • Ammar Sohail
  • Arif Hidayat
  • Muhammad Aamir Cheema
  • David Taniar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10837)


With the recent advances in location-acquisition techniques and GPS-embedded mobile devices, traditional social networks such as Twitter and Facebook have acquired the dimension of location. This in result has facilitated the generation of geo-tagged data (e.g., check-ins) at unprecedented scale and have essentially enhanced the user experience in location-based services associated with social networks. Typical location-based social networks allow people to check-in at a location of interest using smart devices which then is published on social network and this information can be exploited for recommendation. In this paper, we propose a new type of query called Geo-Social Group preference Top-k (SG-\(Top_k\)) query. For a group of users, a SG-\(Top_k\) query returns top-k places that are most likely to satisfy the needs of users based on spatial and social relevance. Finally, we conduct an exhaustive evaluation of proposed schemes to answer the query and demonstrate the effectiveness of the proposed approaches.



Muhammad Aamir Cheema is supported by DP180103411.


  1. 1.
    Sohail, A., Murtaza, G., Taniar, D.: Retrieving top-k famous places in location-based social networks. In: Cheema, M.A., Zhang, W., Chang, L. (eds.) ADC 2016. LNCS, vol. 9877, pp. 17–30. Springer, Cham (2016). Scholar
  2. 2.
    Sohail, A., Cheema, M.A., Taniar, D.: Social-aware spatial top-k and skyline queries. Comput. J. 62 (2018)Google Scholar
  3. 3.
    Curtiss, M., et al.: Unicorn: a system for searching the social graph. In: PVLDB (2013)CrossRefGoogle Scholar
  4. 4.
    Ye, M., Liu, X., Lee, W.-C.: Exploring social influence for recommendation: a generative model approach. In: SIGIR (2012)Google Scholar
  5. 5.
    La Fond, T., Neville, J.: Randomization tests for distinguishing social influence and homophily effects. In: WWW (2010)Google Scholar
  6. 6.
    Tian, Y., Jin, P., Wan, S., Yue, L.: Group preference queries for location-based social networks. In: Chen, L., Jensen, C.S., Shahabi, C., Yang, X., Lian, X. (eds.) APWeb-WAIM 2017. LNCS, vol. 10366, pp. 556–564. Springer, Cham (2017). Scholar
  7. 7.
    Armenatzoglou, N., Ahuja, R., Papadias, D.: Geo-social ranking: functions and query processing. VLDB J. 24, 783–799 (2015)CrossRefGoogle Scholar
  8. 8.
    Qian, Y., Lu, Z., Mamoulis, N., Cheung, D.W.: P-LAG: location-aware group recommendation for passive users. In: Gertz, M., et al. (eds.) SSTD 2017. LNCS, vol. 10411, pp. 242–259. Springer, Cham (2017). Scholar
  9. 9.
    Mouratidis, K., Li, J., Tang, Y., Mamoulis, N.: Joint search by social and spatial proximity. IEEE Trans. Knowl. Data Eng. 27(3), 781–793 (2015)CrossRefGoogle Scholar
  10. 10.
    Huang, Q., Liu, Y.: On geo-social network services. In: 2009 17th International Conference Geoinformatics, pp. 1–6. IEEE, New York (2009)Google Scholar
  11. 11.
    Yang, D.-N., Shen, C.-Y., Lee, W.-C., Chen, M.-S.: On socio-spatial group query for location-based social networks. In: KDD (2012)Google Scholar
  12. 12.
    Sarwat, M., Levandoski, J.J., Eldawy, A., Mokbel, M.F.: LARS*: an efficient and scalable location-aware recommender system. Knowl. Data Eng. 26, 1384–1399 (2014)CrossRefGoogle Scholar
  13. 13.
    Gao, H., Liu, H.: Data analysis on location-based social networks. In: Chin, A., Zhang, D. (eds.) Mobile Social Networking. CSS, pp. 165–194. Springer, New York (2014). Scholar
  14. 14.
    Wu, D., Li, Y., Choi, B., Xu, J.: Social-aware top-k spatial keyword search. In: MDM (2014)Google Scholar
  15. 15.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 40, 11 (2008)CrossRefGoogle Scholar
  16. 16.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66, 614–656 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jiang, J., Lu, H., Yang, B., Cui, B.: Finding top-k local users in geo-tagged social media data. In: ICDE (2015)Google Scholar
  18. 18.
    Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In: SIGKDD, pp. 467–476 (2009)Google Scholar
  19. 19.
    Li, C.-T., Shan, M.-K.: Team formation for generalized tasks in expertise social networks. In: IEEE, SocialCom/IEEE, PASSAT (2010)Google Scholar
  20. 20.
    Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: Data Engineering. IEEE (2004)Google Scholar
  21. 21.
    Yiu, M.L., Dai, X., Mamoulis, N., Vaitis, M.: Top-k spatial preference queries. In: ICDE (2007)Google Scholar
  22. 22.
    Attique, M., Cho, H.-J., Jin, R., Chung, T.-S.: Top-k spatial preference queries in directed road networks. ISPRS Int. J. Geo-Inf. 5, 170 (2016)CrossRefGoogle Scholar
  23. 23.
    Eunjoon, C., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: ACM SIGKDD (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ammar Sohail
    • 1
  • Arif Hidayat
    • 1
  • Muhammad Aamir Cheema
    • 1
  • David Taniar
    • 1
  1. 1.Faculty of Information TechnologyMonash UniversityMelbourneAustralia

Personalised recommendations