Advertisement

Histogram Construction for Difference Analysis of Spatio-Temporal Data on Array DBMS

  • Jing Zhao
  • Yoshiharu Ishikawa
  • Chuan Xiao
  • Kento Sugiura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10837)

Abstract

To analyze scientific data, there are frequent demands for comparing multiple datasets on the same subject to detect any differences between them. For instance, comparison of observation datasets in a certain spatial area at different times or comparison of spatial simulation datasets with different parameters are considered to be important. Therefore, this paper proposes a difference operator in spatio-temporal data warehouses, based on the notion of histograms in the database research area. We propose a difference histogram construction method and they are used for effective and efficient data visualization in difference analysis. In addition, we implement the proposed algorithms on an array DBMSs SciDB, which is appropriate to process and manage scientific data. Experiments are conducted using mass evacuation simulation data in tsunami disasters, and the effectiveness and efficiency of our methods are verified.

Notes

Acknowledgements

This study was partly supported by the Grants-in-aid for Scientific Research (16H01722) and CREST: “Creation of Innovative Earthquake and Tsunami Disaster Reduction Big Data Analysis Foundation by Cooperation of Large-Scale and High-Resolution Numerical Simulations and Data Assimilations”.

References

  1. 1.
    Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity estimation in spatial databases. In: SIGMOD, pp. 13–24 (1999)CrossRefGoogle Scholar
  2. 2.
    Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. SIGKDD Explor. Newsl. 9(2), 38–46 (2007)CrossRefGoogle Scholar
  3. 3.
    Arunprasad, K.S., Marathe, P.: Query processing techniques for arrays. VLDB J. 11(1), 68–91 (2002)CrossRefGoogle Scholar
  4. 4.
    Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: The multidimensional database system RasDaMan. In: SIGMOD, pp. 575–577 (1998)CrossRefGoogle Scholar
  5. 5.
    Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: a multidimensional workload-aware histogram. In: SIGMOD, pp. 211–222 (2001)CrossRefGoogle Scholar
  6. 6.
    Ehsan, H., Sharaf, M.A., Chrysanthis, P.K.: MuVE: efficient multi-objective view recommendation for visual data exploration. In: ICDE, pp. 731–742 (2016)Google Scholar
  7. 7.
    Eldawy, A., Mokbel, M.F., Al-Harthi, S., Alzaidy, A., Tarek, K., Ghani, S.: SHAHED: a mapreduce-based system for querying and visualizing spatio-temporal satellite data. In: ICDE, pp. 1585–1596 (2015)Google Scholar
  8. 8.
    Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Informatica 4(1), 1–9 (1974)CrossRefGoogle Scholar
  9. 9.
    Hristidis, V., Chen, S.-C., Li, T., Luis, S., Deng, Y.: Survey of data management and analysis in disaster situations. J. Syst. Softw. 83(10), 1701–1714 (2010)CrossRefGoogle Scholar
  10. 10.
    Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data exploration techniques. In: SIGMOD, pp. 277–281 (2015)Google Scholar
  11. 11.
    Ioannidis, Y.: The history of histograms (abridged). In: VLDB, pp. 19–30 (2003)CrossRefGoogle Scholar
  12. 12.
    Jagadish, H.V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K.C., Suel, T.: Optimal histograms with quality guarantees. In: VLDB, pp. 275–286 (1998)Google Scholar
  13. 13.
    Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitionings in two dimensions: algorithms, complexity and applications. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 236–256. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49257-7_16CrossRefGoogle Scholar
  14. 14.
    Parameswaran, A., Polyzotis, N., Garcia-Molina, H.: SeeDB: visualizing database queries efficiently. PVLDB 7(4), 325–328 (2013)Google Scholar
  15. 15.
    Rusu, F., Cheng, Y.: A survey on array storage, query languages, and systems. CoRR, abs/1302.0103 (2013)Google Scholar
  16. 16.
    Paradigm4: Creators of SciDB a computational DBMS. http://www.paradigm4.com/
  17. 17.
    Stonebraker, M., Brown, P., Poliakov, A., Raman, S.: The architecture of SciDB. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 1–16. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22351-8_1CrossRefGoogle Scholar
  18. 18.
    Stonebraker, M., Brown, P., Zhang, D., Becla, J.: SciDB: a database management system for applications with complex analytics. IEEE Comput. Sci. Eng. 15(3), 54–62 (2013)CrossRefGoogle Scholar
  19. 19.
    Xuan, S., Quanshi, Z., Yoshihide, S., Ryosuke, S., Jing, Y.N., Xing, X.: A simulator of human emergency mobility following disasters: knowledge transfer from big disaster data. In: AAAI, pp. 730–736 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jing Zhao
    • 1
  • Yoshiharu Ishikawa
    • 2
  • Chuan Xiao
    • 3
  • Kento Sugiura
    • 1
  1. 1.Graduate School of Information ScienceNagoya UniversityNagoyaJapan
  2. 2.Graduate School of InformaticsNagoya UniversityNagoyaJapan
  3. 3.Institute for Advanced ResearchNagoya UniversityNagoyaJapan

Personalised recommendations