Advertisement

Finding Maximal Stable Cores in Social Networks

  • Alexander Zhou
  • Fan Zhang
  • Long Yuan
  • Ying Zhang
  • Xuemin Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10837)

Abstract

Maximal Stable Cores are a cohesive subgraph on a social network which use both engagement and similarity to identify stable groups of users. The problem is, when given a query user and a similarity threshold, to find all Maximal Stable Cores relative to the user. We propose a baseline algorithm and as the problem is NP-Hard, an improved heuristic algorithm which utilises linear time k-core decomposition. Experiments how that when the two algorithms differ, the improved algorithm significantly outperforms the baseline.

Keywords

Social networks Graph databases Maximal Stable Core \((k, r)\)-core 

References

  1. 1.
    Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049 (2003)Google Scholar
  2. 2.
    Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unravelling in social networks: the anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575–576 (2006)CrossRefGoogle Scholar
  4. 4.
    Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: KDD, pp. 1240–1348 (2012)Google Scholar
  5. 5.
    Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 364–375. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20662-7_31CrossRefGoogle Scholar
  6. 6.
    Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large attributed graphs. PVLDB 9(12), 1233–1244 (2016)Google Scholar
  7. 7.
    Fang, Y., Zhang, H., Ye, Y., Li, X.: Detecting hot topics from twitter: a multiview approach. J. Inf. Sci. 40(5), 578–593 (2014)CrossRefGoogle Scholar
  8. 8.
    Goldberg, M.K., Kelly, S., Magdon-Ismail, M., Mertsalov, K., Wallace, A.: Finding overlapping communities in social networks. In: SocialCom/PASSAT, pp. 104–113 (2010)Google Scholar
  9. 9.
    Hristova, D., Musolesi, M., Mascolo, C.: Keep your friends close and your facebook friends closer: a multiplex network approach to the analysis of offline and online social ties. In: ICWSM (2014)Google Scholar
  10. 10.
    Huang, X., Lu, W., Lakshmanan, L.V.S.: Truss decomposition of probabilistic graphs: semantics and algorithms. In: SIGMOD, pp. 77–90 (2016)Google Scholar
  11. 11.
    Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core deomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)Google Scholar
  13. 13.
    Wang, J., Cheng, J., Fi, A.W.: Redundancy-aware maximal cliques. In: KDD, pp. 122–130 (2013)Google Scholar
  14. 14.
    Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an efficient algorithm to prevent unravelling in social networks. PVLDB 10(6), 649–660 (2017)Google Scholar
  15. 15.
    Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: efficient (k, r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)Google Scholar
  16. 16.
    Zhu, Q., Hu, H., Xu, J., Lee, W.: Geo-social group queries with minimum acquaintance constraint. CoRR, abs/1406.7367 (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Zhou
    • 1
  • Fan Zhang
    • 2
  • Long Yuan
    • 2
  • Ying Zhang
    • 3
  • Xuemin Lin
    • 2
  1. 1.The University of QueenslandBrisbaneAustralia
  2. 2.The University of New South WalesSydneyAustralia
  3. 3.The University of Technology SydneySydneyAustralia

Personalised recommendations