We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FEM-BEM Coupling | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

FEM-BEM Coupling

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Advanced Boundary Element Methods

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The BEM is well established for the solution of linear elliptic boundary value problems. Its essential feature is the reduction of the partial differential equation in the domain to an integral equation on the surface. Then, for the numerical treatment, only the surface has to be discretized. This leads to a comparatively small number of unknowns. It is possible to solve problems in unbounded domains. In contrast, the FEM requires a discretization of the domain. However, when dealing with nonlinear problems, the latter method is more versatile. Typical examples for which the coupling of both methods is advantageous are rubber sealings and bearings that are located between construction elements made of steel, concrete, or glass. For these elements, linear elasticity often is a sufficient model, and the BEM is favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Ammari, A. Buffa, J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60, 1805–1823 (2000)

    Article  MathSciNet  Google Scholar 

  2. M. Aurada, M. Feischl, Th. Führer, M. Karkulik, J.M. Melenk, D. Praetorius, Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Comput. Mech. 51, 399–419 (2014)

    Article  MathSciNet  Google Scholar 

  3. M. Aurada, M. Feischl, Th. Führer, M. Karkulik, J.M. Melenk, D. Praetorius, Local inverse estimates for non-local boundary integral operators. Math. Comput. 86, 2651–2686 (2017)

    Article  MathSciNet  Google Scholar 

  4. M. Aurada, M. Feischl, D. Praetorius, Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems. ESAIM Math. Model. Numer. Anal. 46, 1147–1173 (2012)

    Article  MathSciNet  Google Scholar 

  5. R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe, B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell’s equations. Surveys Math. Indust. 8, 271–312 (1999)

    MathSciNet  MATH  Google Scholar 

  6. A. Bespalov, S. Nicaise, A priori error analysis of the BEM with graded meshes for the electric field integral equation on polyhedral surfaces. Comput. Math. Appl. 71, 1636–1644 (2016)

    Article  MathSciNet  Google Scholar 

  7. J. Bielak, R.C. MacCamy, An exterior interface problem in two-dimensional elastodynamics. Quart. Appl. Math. 41, 143–159 (1983/84)

    Article  MathSciNet  Google Scholar 

  8. D. Boffi, M. Costabel, M. Dauge, L. Demkowicz, R. Hiptmair, Discrete compactness for the p-version of discrete differential forms. SIAM J. Numer. Anal. 49, 135–158 (2011)

    Article  MathSciNet  Google Scholar 

  9. A. Bossavit, The computation of eddy-currents, in dimension 3, by using mixed finite elements and boundary elements in association. Math. Comput. Modell. 15, 33–42 (1991)

    Article  MathSciNet  Google Scholar 

  10. J.H. Bramble, R.D. Lazarov, J.E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comput. 66, 935–955 (1997)

    Article  MathSciNet  Google Scholar 

  11. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15 (Springer, New York, 1991)

    Google Scholar 

  12. U. Brink, E.P. Stephan, Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity. Numer. Methods Partial Differ. Equ. 17, 79–92 (2001)

    Article  MathSciNet  Google Scholar 

  13. A. Buffa, Trace Theorems on Non-smooth Boundaries for Functional Spaces Related to Maxwell Equations: An Overview. Computational Electromagnetics (Kiel, 2001). Lect. Notes Comput. Sci. Eng., vol. 28 (Springer, Berlin, 2003), pp. 23–34

    Google Scholar 

  14. A. Buffa, S.H. Christiansen, The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math. 94, 229–267 (2003)

    Article  MathSciNet  Google Scholar 

  15. A. Buffa, P. Ciarlet, Jr., On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24, 9–30 (2001)

    MATH  Google Scholar 

  16. A. Buffa, P. Ciarlet, Jr., On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24, 31–48 (2001)

    MATH  Google Scholar 

  17. A. Buffa, M. Costabel, D. Sheen, On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)

    Article  MathSciNet  Google Scholar 

  18. A. Buffa, R. Hiptmair, Galerkin Boundary Element Methods for Electromagnetic Scattering. Topics in Computational Wave Propagation. Lect. Notes Comput. Sci. Eng., vol. 31 (Springer, Berlin, 2003), pp. 83–124

    Google Scholar 

  19. C. Carstensen, S.A. Funken, Coupling of nonconforming finite elements and boundary elements. I. A priori estimates. Computing 62, 229–241 (1999)

    MathSciNet  MATH  Google Scholar 

  20. C. Carstensen, S.A. Funken, Coupling of mixed finite elements and boundary elements. IMA J. Numer. Anal. 20, 461–480 (2000)

    Article  MathSciNet  Google Scholar 

  21. C. Carstensen, S.A. Funken, E.P. Stephan, On the adaptive coupling of FEM and BEM in 2-d-elasticity. Numer. Math. 77, 187–221 (1997)

    Article  MathSciNet  Google Scholar 

  22. C. Carstensen, J. Gwinner, FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM J. Numer. Anal. 34, 1845–1864 (1997)

    Article  MathSciNet  Google Scholar 

  23. C. Carstensen, E.P. Stephan, Adaptive coupling of boundary elements and finite elements. RAIRO Modél. Math. Anal. Numér. 29, 779–817 (1995)

    Article  MathSciNet  Google Scholar 

  24. P.G. Ciarlet, Basic Error Estimates for Elliptic Problems. Handbook of Numerical Analysis, Vol. II (North-Holland, Amsterdam, 1991), pp. 17–351

    Chapter  Google Scholar 

  25. Ph. Clément, Approximation by finite element functions using local regularization. RAIRO Analyse Numérique 9, 77–84 (1975)

    Article  MathSciNet  Google Scholar 

  26. M. Costabel, Symmetric Methods for the Coupling of Finite Elements and Boundary Elements (Invited Contribution). Boundary Elements IX, Vol. 1 (Stuttgart, 1987) (Comput. Mech., Southampton, 1987), pp. 411–420

    Google Scholar 

  27. M. Costabel, A Symmetric Method for the Coupling of Finite Elements and Boundary Elements. The Mathematics of Finite Elements and Applications, VI (Uxbridge, 1987) (Academic Press, London, 1988), pp. 281–288

    Google Scholar 

  28. M. Costabel, V.J. Ervin, E.P. Stephan, Symmetric coupling of finite elements and boundary elements for a parabolic-elliptic interface problem. Quart. Appl. Math. 48, 265–279 (1990)

    Article  MathSciNet  Google Scholar 

  29. M. Costabel, V.J. Ervin, E.P. Stephan, Experimental convergence rates for various couplings of boundary and finite elements. Math. Comput. Model. 15, 93–102 (1991)

    Article  MathSciNet  Google Scholar 

  30. M. Costabel, A. McIntosh, On Bogovskiı̆ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265, 297–320 (2010)

    Article  MathSciNet  Google Scholar 

  31. M. Costabel, E.P. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)

    Article  MathSciNet  Google Scholar 

  32. M. Costabel, E.P. Stephan, Coupling of Finite Elements and Boundary Elements for Inhomogeneous Transmission Problems in R 3. The Mathematics of Finite Elements and Applications, VI (Uxbridge, 1987) (Academic Press, London, 1988), pp. 289–296

    Google Scholar 

  33. M. Costabel, E.P. Stephan, Coupling of Finite Elements and Boundary Elements for Transmission Problems of Elastic Waves in R 3. Advanced Boundary Element Methods (San Antonio, TX, 1987) (Springer, Berlin, 1988), pp. 117–124

    Chapter  Google Scholar 

  34. M. Costabel, E.P. Stephan, Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27, 1212–1226 (1990)

    Article  MathSciNet  Google Scholar 

  35. M. Feischl, Th. Führer, G. Mitscha-Eibl, D. Praetorius, E.P. Stephan, Convergence of adaptive BEM and adaptive FEM-BEM coupling for estimators without h-weighting factor. Comput. Methods Appl. Math. 14, 485–508 (2014)

    Article  MathSciNet  Google Scholar 

  36. Th. Führer, Zur Kopplung von Finiten Elementen und Randelementen, Ph.D. thesis, TU Wien, 2014

    Google Scholar 

  37. G.N. Gatica, G.C. Hsiao, F.-J. Sayas, Relaxing the hypotheses of Bielak-MacCamy’s BEM-FEM coupling. Numer. Math. 120, 465–487 (2012)

    Article  MathSciNet  Google Scholar 

  38. G.N. Gatica, N. Heuer, E.P. Stephan, An implicit-explicit residual error estimator for the coupling of dual-mixed finite elements and boundary elements in elastostatics. Math. Methods Appl. Sci. 24, 179–191 (2001)

    Article  MathSciNet  Google Scholar 

  39. G.N. Gatica, M. Maischak, E.P. Stephan, Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM. ESAIM Math. Model. Numer. Anal. 45, 779–802 (2011)

    Article  MathSciNet  Google Scholar 

  40. H. Gimperlein, M. Maischak, E. Schrohe, E.P. Stephan, Adaptive FE-BE coupling for strongly nonlinear transmission problems with Coulomb friction. Numer. Math. 117, 307–332 (2011)

    Article  MathSciNet  Google Scholar 

  41. V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics, vol. 5 (Springer, Berlin, 1986). Theory and Algorithms

    Book  Google Scholar 

  42. H. Han, A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8, 223–232 (1990)

    MathSciNet  MATH  Google Scholar 

  43. N. Heuer, M. Maischak, E.P. Stephan, Preconditioned minimum residual iteration for the h-p version of the coupled FEM/BEM with quasi-uniform meshes. Numer. Linear Algebra Appl. 6, 435–456 (1999)

    Article  MathSciNet  Google Scholar 

  44. N. Heuer, S. Meddahi, F.-J. Sayas, Symmetric coupling of LDG-FEM and DG-BEM. J. Sci. Comput. 68, 303–325 (2016)

    Article  MathSciNet  Google Scholar 

  45. R. Hiptmair, Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40, 41–65 (2002)

    Article  MathSciNet  Google Scholar 

  46. R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering. SIAM J. Numer. Anal. 41, 919–944 (2003)

    Article  MathSciNet  Google Scholar 

  47. R. Hiptmair, C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40, 66–86 (2002)

    Article  MathSciNet  Google Scholar 

  48. C. Johnson, J.C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comput. 35, 1063–1079 (1980)

    Article  MathSciNet  Google Scholar 

  49. M. Karkulik, Zur Konvergenz und Quasioptimalität adaptiver Randelementmethoden, Ph.D. thesis, TU Wien, 2012

    Google Scholar 

  50. A. Krebs, M. Maischak, E.P. Stephan, Adaptive FEM-BEM coupling with a Schur complement error indicator. Appl. Numer. Math. 60, 798–808 (2010)

    Article  MathSciNet  Google Scholar 

  51. F. Leydecker, hp-version of the boundary element method for electromagnetic problems : error analysis, adaptivity, preconditioners, Ph.D. thesis, Leibniz Universität Hannover, 2006

    Google Scholar 

  52. F. Leydecker, M. Maischak, E.P. Stephan, M. Teltscher, Adaptive FE-BE coupling for an electromagnetic problem in \(\mathbb {R}^3\)—a residual error estimator. Math. Methods Appl. Sci. 33, 2162–2186 (2010)

    Google Scholar 

  53. F. Leydecker, M. Maischak, E.P. Stephan, M. Teltscher, A p-hierarchical error estimator for a fe-be coupling formulation applied to electromagnetic scattering problems in \(\mathbb {R}^3\). Appl. Anal. 91, 277–293 (2012)

    Google Scholar 

  54. J.-L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Grundlehren der mathematischen Wissenschaften, vol. 181 (Springer, New York-Heidelberg, 1972). Translated from the French by P. Kenneth

    Google Scholar 

  55. R.C. MacCamy, E.P. Stephan, A Simple Layer Potential Method for Three-Dimensional Eddy Current Problems. Ordinary and Partial Differential Equations. Lecture Notes in Math., vol. 1964 (Springer, Berlin, 1982), pp. 477–484

    Chapter  Google Scholar 

  56. R.C. MacCamy, E.P. Stephan, A skin effect approximation for eddy current problems. Arch. Ration. Mech. Anal. 90, 87–98 (1985)

    Article  MathSciNet  Google Scholar 

  57. R.C. MacCamy, M. Suri, A time-dependent interface problem for two-dimensional eddy currents. Quart. Appl. Math. 44, 675–690 (1987)

    Article  MathSciNet  Google Scholar 

  58. M. Maischak, Fem/bem Methods for Signorini-Type Problems: Error Analysis, Adaptivity, Preconditioners. Habilitationsschrift (Leibniz Universität Hannover, 2004)

    Google Scholar 

  59. M. Maischak, E.P. Stephan, A least squares coupling method with finite elements and boundary elements for transmission problems. Comput. Math. Appl. 48, 995–1016 (2004)

    Article  MathSciNet  Google Scholar 

  60. M. Maischak, E.P. Stephan, A FEM-BEM coupling method for a nonlinear transmission problem modelling Coulomb friction contact. Comput. Methods Appl. Mech. Eng. 194, 453–466 (2005)

    Article  MathSciNet  Google Scholar 

  61. S. Meddahi, J. Valdés, O. Menéndez, P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69, 113–124 (1996)

    Article  MathSciNet  Google Scholar 

  62. P. Mund, E.P. Stephan, Adaptive coupling and fast solution of FEM-BEM equations for parabolic-elliptic interface problems. Math. Methods Appl. Sci. 20, 403–423 (1997)

    Article  MathSciNet  Google Scholar 

  63. P. Mund, E.P. Stephan, An adaptive two-level method for the coupling of nonlinear FEM-BEM equations. SIAM J. Numer. Anal. 36, 1001–1021 (1999)

    Article  MathSciNet  Google Scholar 

  64. J.C. Nédélec, Mixed finite elements in R 3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  65. J.C. Nédélec, Integral equations with nonintegrable kernels. Integr. Equ. Oper. Theory 5, 562–572 (1982)

    Article  MathSciNet  Google Scholar 

  66. J.C. Nédélec, Computation of eddy currents on a surface in R 3 by finite element methods. SIAM J. Numer. Anal. 15, 580–594 (1978)

    Article  MathSciNet  Google Scholar 

  67. G. Of, O. Steinbach, Is the one-equation coupling of finite and boundary element methods always stable?. ZAMM Z. Angew. Math. Mech. 93, 476–484 (2013)

    Article  MathSciNet  Google Scholar 

  68. R.A. Prato Torres, E.P. Stephan, F. Leydecker, A FE/BE coupling for the 3D time-dependent eddy current problem. Part I: a priori error estimates. Computing 88, 131–154 (2010)

    MATH  Google Scholar 

  69. R.A. Prato Torres, E.P. Stephan, F. Leydecker, A FE/BE coupling for the 3D time-dependent eddy current problem. Part II: a posteriori error estimates and adaptive computations. Computing 88, 155–172 (2010)

    MATH  Google Scholar 

  70. J.E. Roberts, J.-M. Thomas, Mixed and Hybrid Methods. Handbook of Numerical Analysis, Vol. II. Handb. Numer. Anal., II (North-Holland, Amsterdam, 1991), pp. 523–639

    Google Scholar 

  71. F.-J. Sayas, The validity of Johnson-Nédélec’s BEM-FEM coupling on polygonal interfaces. SIAM J. Numer. Anal. 47, 3451–3463 (2009)

    Article  MathSciNet  Google Scholar 

  72. O. Steinbach, A note on the stable one-equation coupling of finite and boundary elements. SIAM J. Numer. Anal. 49, 1521–1531 (2011)

    Article  MathSciNet  Google Scholar 

  73. E.P. Stephan, Coupling of finite elements and boundary elements for some nonlinear interface problems. Comput. Methods Appl. Mech. Eng. 101, 61–72 (1992)

    Article  MathSciNet  Google Scholar 

  74. E.P. Stephan, M. Maischak, A posteriori error estimates for fem-bem couplings of three-dimensional electromagnetic problems. Comput. Methods Appl. Mech. Eng. 194, 441–452 (2005)

    Article  MathSciNet  Google Scholar 

  75. H. Yserentant, On the multilevel splitting of finite element spaces. Numer. Math. 49, 379–412 (1986)

    Article  MathSciNet  Google Scholar 

  76. E. Zeidler, Nonlinear Functional Analysis and Its Applications. IV (Springer, New York, 1988)

    Chapter  Google Scholar 

  77. O.C. Zienkiewicz, D.W. Kelly, P. Bettess, Marriage à la Mode—The Best of Both Worlds (Finite Elements and Boundary Integrals). Energy Methods in Finite Element Analysis (Wiley, Chichester, 1979), pp. 81–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gwinner, J., Stephan, E.P. (2018). FEM-BEM Coupling. In: Advanced Boundary Element Methods. Springer Series in Computational Mathematics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-92001-6_12

Download citation

Publish with us

Policies and ethics