Improvement of Fig (Ficus carica L.) by Conventional Breeding and Biotechnology

  • Fateh AljaneEmail author
  • Awatef Essid
  • Sabrine Nahdi


The common fig ( Ficus carica L.), family Moraceae, is the only member in the genus cultivated for its fruits. For the past several decades, severe genetic erosion has threatened fig germplasm. Therefore, several fig collections were established in Asia, Europe, North America and North Africa. Fig cultivars are usually characterized using traditional methods based on phenotypic characters. However, molecular identification of fig cultivars has been carried out using random amplified polymorphic DNA (RAPD), inter simple sequence repeat (ISSR) and single sequence repeats (SSR) molecular markers. Marker-assisted selection is used to identify a character of interest such as yield, fruit quality, biotic and abiotic stress resistance. Induced mutations are desirable in fig improvement for important fruit characters such as small ostiole size, large fruit size and fruit flesh quality. Fig mosaic disease (FMD) is one of the major diseases of fig found throughout the world. Different fig improvement breeding methods are described in this chapter including conventional breeding and biotechnology approaches.


Ficus carica Germplasm Hybridization Molecular marker Pollination Selection Variety characterization 



I acknowledge my colleagues, especially A. Essid, S. Nahdi, T. Triki, B. Lachiheb, L. Ben Yahia, M. Lahzein, K. M’saddak, A. M’saddak and A. Warda, in the Arid Land and Oasis Cropping Laboratory. As well, I gratefully acknowledge my colleagues B. Ben Salem and M. Ettir, who work in the germplasm collection (El Gordhab) of the Institute of Arid Regions of Medenine, Tunisia.


  1. Agarwal M, Shrivastava N, Padth H (2008) Advances in molecular markers techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631CrossRefPubMedGoogle Scholar
  2. Akbulut M, Ercisli M, Karlidag SH (2009) RAPD-based study of genetic variation and relationships among wild fig genotypes in Turkey. Genet Mol Res 8(3):1109–1115CrossRefPubMedGoogle Scholar
  3. Aksoy U (1995) Present status and future prospects of underutilized fruit production in Turkey. Cah Opt Mediterr 13:97–107Google Scholar
  4. Aksoy U (1998) Why figs? An old taste and a new perspective. Acta Hort 480:25–26CrossRefGoogle Scholar
  5. Aksoy U, Balci B, Can HZ et al (2003) Some significant results of the research-work in Turkey on fig. Acta Hort 606:173–181CrossRefGoogle Scholar
  6. Aksoy U, Seferoglu A, Misirli S (1992) Selection of table fig cultivars suitable for Aegean region conditions. In: Proceeding international Turkish horticulture congress, vol 1, Ismir, Turkey, pp 545–548Google Scholar
  7. Al Ibrahim A (2000) Arbre du figuier: culture- variétés- multiplication- conduite. Ministère d’Agriculture, Damas, SyriaGoogle Scholar
  8. Al Ibrahim A, Bari A (2006) Fig genetic resources in Syria: varietal diversity, agronomic and economic importance. Paper presented at the 46th annual science week, conference on sustainable agricultural development and food security, Tishreen University, Syria, Lattakia, 20–23 Nov 2006Google Scholar
  9. Aljane F (2006) Propagation et conservation des cultivars du figuier (Ficus carica L.) en Tunisie. J Algér Zones Arid 5:29–37Google Scholar
  10. Aljane F (2011) Caractérisation et évaluation des accessions locales de figuier (Ficus carica L,) en Tunisie et sélection des plus performantes. Thèse de doctorat, Faculté des Sciences de Tunis, Tunisie, TunisGoogle Scholar
  11. Aljane F (2016) Analysis of genetic diversity in Tunisian fig (Ficus carica L.) germplasm bank revealed by RAPD markers and morphological characters. Eur J Sci Res 142(2):172–192Google Scholar
  12. Aljane F, Ferchichi A (2007) Caractérisation et évaluation de six cultivars du caprifiguier (Ficus carica L.) en Tunisie. Plant Genet Res Newslett 151:22–26Google Scholar
  13. Aljane F, Ferchichi A (2009a) Assessment of genetic diversity among some southern Tunisian fig (Ficus carica L.) cultivars based on morphological descriptors. Jordan J Agric Sci 5(1):1–16Google Scholar
  14. Aljane F, Ferchichi A (2009b) Post-harvest chemical properties and mineral contents of some fig (Ficus carica L.) cultivars in Tunisia. J Food Agric Environ 7(2):209–212Google Scholar
  15. Aljane F, Ferchichi A (2010) Assessment of genetic diversity of Tunisian fig (Ficus carica L.) cultivars using morphological and chemical characters. Acta Bot Gallalica 157(1):171–182Google Scholar
  16. Aljane F, Nahdi S (2014) Propagation of some local fig (Ficus carica L.) cultivars by hardwood cuttings under the field conditions in Tunisia. Int Sch Res Not 1–5.
  17. Aljane F, Nahdi S, Essid A (2012) Genetic diversity of some accessions of Tunisian fig tree (Ficus carica L.) based in morphological and chemical traits. J Natl Prod Plant Res 2(3):350–359Google Scholar
  18. Almajali D, Abdel-Ghani AH, Migdadi H (2012) Evaluation of genetic diversity among Jordanian fig germplasm accessions by morphological traits and ISSR markers. Sci Hortic 147:8–19CrossRefGoogle Scholar
  19. Antunes MDC, Costa P, Migel MG et al (2008) The effect of postharvest treatments with sodium bicarbonate or acetic acid on storage ability and quality of fig fruit. Acta Hortic 798:279–284CrossRefGoogle Scholar
  20. Bachir Bey M, Louaileche H (2015) A comparative study of phytochemical profile and in vitro antioxidant activities of dark and light dried fig (Ficus carica L.) varieties. J Phytopharm 4(1):41–48Google Scholar
  21. Bayoudh C, Elair M, Labidi R (2017) Efficacy of tissue culture in virus elimination from caprifig and female fig varieties (Ficus carica L.). Plant Path J 33(3):288–295.
  22. Beck NG, Lord EM (1988) Breeding system in Ficus carica, the common fig. II. Pollination events. Am J Bot 75:1913–1922CrossRefGoogle Scholar
  23. Berg CC (2003) Flora malesiana precursor for the treatment of Moraceae 1: the main subdivision of Ficus: the subgenera. Blumea 48:167–178Google Scholar
  24. Blodgett EC, Gomec B (1967) Fig mosaic. Plant Dis Rep 51:893–896Google Scholar
  25. Bostan SZ, Islam A, Aygün A (1998) A study pomological characteristics of local fig cultivars in Northern Turkey. Acta Hort 480:71–73CrossRefGoogle Scholar
  26. Cabrita LF, Aksoy U, Hepaksoy S, Leitao JM (2001) Suitability of isozyme, RAPD and AFLP markers to assess genetic differences and relatedness among fig (Ficus carica L.) clones. Sci Hortic 87:261–273CrossRefGoogle Scholar
  27. Caliskan O, Polat AA (2008) Fruit characteristics of fig cultivars and genotypes grown in Turkey. Sci Hortic 115:360–367CrossRefGoogle Scholar
  28. Caliskan O, Polat AA (2011) Phytochemical and antioxidant properties of selected fig (Ficus carica L.) accessions from the eastern Mediterranean region of Turkey. Sci Hortic 128:473–478CrossRefGoogle Scholar
  29. Callen DF, Thompson AD, Shen Y et al (1993) Incidence and origin of “null” alleles in the (AC) n microsatellite markers. Am J Hum Genet 52:922–927PubMedPubMedCentralGoogle Scholar
  30. Can HZ (1993) The investigation of some horticultural characteristics of some selected fig genotypes in Aegean Region. Master’s thesis, Ege University, Turkey, IzmirGoogle Scholar
  31. Castellano MA, Gattoni G, Minafra A et al (2007) Fig mosaic in Mexico and South Africa. J Plant Pathol 89:441–444Google Scholar
  32. CBNMP (1979) Conservatoire Botanique National Méditerranéen de Porquerolles. France, Ile de Porquerolles. Retrieved from Accessed on Aug 2017
  33. Chevreau E (2009) La transgénèse pour l’innovation variétale fruitière: état des lieux et perspectives. Innov Agron 7:153–163Google Scholar
  34. Condit IJ (1941) Fig characteristics useful in the identification of varieties. Hilgard 14:1–69CrossRefGoogle Scholar
  35. De Masi L, Cipollaro M, Di Bernardo G et al (2003) Clonal selection and molecular characterization by RAPD analysis of the Fig (Ficus carica L) ‘’Dottato’’ and ‘’Bianco del Cilento’’ cultivars in Italy. Acta Hortic 605:65–68CrossRefGoogle Scholar
  36. Demiralay A, Yalçin-Mendi Y, Aka-Kaçar Y, Çetiner S (1998) In vitro propagation of Ficus carica L. var. Bursa Siyahi through meristem culture. Acta Hortic 480:165–167CrossRefGoogle Scholar
  37. Dolgun O, Tekintas FE (2008) Production of fig (Ficus carica L.) nursery plants by stem layering method. Agric Cospectus Sci 73(3):157–160Google Scholar
  38. Doyle JF, Ferguson L, Herman K (2005) Fig cultivar development and evaluation. Acta Hortic 605:29–36Google Scholar
  39. Doyle JF, Ferguson L (2005) Sierra: a new non-caprifying Calimyrna. In: Abstracts of the third international symposium on Fig, University of Algarve, Vilamoura, Portugal, 16–20 May 2005Google Scholar
  40. Duenas M, Perez-Alonso JJ, Santos-Buelga C, Escribano-Bailon T (2008) Anthocyanin composition in fig (Ficus carica L.). J Food Comp Anal 21:107–115CrossRefGoogle Scholar
  41. Elair M, Mahfoudhi N, Bayoudh C et al (2014) Sanitary selection of virus-tested fig (Ficus carica) cultivars in Tunisia. Tunis J Plant Prot 100(2):100–109Google Scholar
  42. Elbeaino T, Digiaro M, De Stradi A et al (2007) Identification of a second member of the family Closteroviridae in mosaic disease figs. J Plant Pathol 89:119–124Google Scholar
  43. Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and application. IPGRI, Rome, pp 8–20Google Scholar
  44. Ercisli S, Tosun M, Karlidag H et al (2012) Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from northeastern Turkey. Plant Food Hum Nutr 67:271–276CrossRefGoogle Scholar
  45. Esclapon RG (1976) Le figuier et son avenir dans le midi de la France. Arboriculture Fruitière, France, p 266Google Scholar
  46. Essid A, Aljane F, Ferchichi A (2015) Analysis of genetic diversity of Tunisian caprifig (Ficus carica L.) accessions using simple sequence repeat (SSR) markers. Hered 152(1):1–7.
  47. Essid A, Aljane F, Ferchichi A (2017) Morphological characterization and pollen evaluation of some Tunisian ex situ planted caprifig (Ficus carica L.) ecotypes. S Afr J Bot 111:134–143CrossRefGoogle Scholar
  48. FAO (2015) The FAO statistical database-agriculture. Food Agriculture Organization. Retrieved from Accessed on Aug 2017
  49. Ferguson L, Michailides JT, Shorey HH (1990) The California fig industry. Hort Rev 12:409–490Google Scholar
  50. Flaishman M, Pearl A, Golobowicz S (2012) Transgenic Ficus, method for producing same and use thereof. US Patent 8,148,603, B2, 3 Avr 2012Google Scholar
  51. Flaishman M, Rodov V, Stover E (2007) The fig: botany, horticulture and breeding. In: Janick J (ed) Horticultural reviews, vol 34. Wiley, Hoboken, NJ, USA, pp 113–197Google Scholar
  52. Flaishman MA, Yablovich Z, Golobovich S et al (2008) Molecular breeding in fig (Ficus carica) by the use of genetic transformation. Acta Hortic 798:151–158. Scholar
  53. Galderisi U, Cipollaro M, Di Bernardo G et al (1999) Identification of the edible fig “Bianco Del Cilento” by random amplified polymorphic DNA analysis. Hortic Sci 34(7):1263–1265Google Scholar
  54. Gao L, Mazza G (1995) Characterization quantitation and distribution of anthocyanins and colour less phenolics in sweet cherries. J Agriic Food Chem 43:343–346CrossRefGoogle Scholar
  55. Gattoni G, Minafra A, Castellano MA et al (2009) Some properties of fig latent virus 1, a new member of the family Flexiviridae. J Plant Pathol 91:555–564Google Scholar
  56. Giraldo E (2005) Characterization morfologica y molecular de variedades de higuera (Ficus carica L.). Ph.D. thesis, University of Extremadura, SpainGoogle Scholar
  57. Giraldo E, Lopez Corrales M, Hormaza JI (2008) Selection of morphological quantitative variables in fig characterization. Acta Hortic 798:103–108CrossRefGoogle Scholar
  58. Golombek SD, Ludders P (1990) Effects of short-term salinity on leaf gas exchange of the fig (Ficus carica L.). Plant Soil 148:21–27CrossRefGoogle Scholar
  59. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis in bread wheat. Euphy 113:163–185CrossRefGoogle Scholar
  60. Grassi G, Santonastaso M (1998) The fig growing in Italy: the present state and problems. Acta Hortic 480:31–35CrossRefGoogle Scholar
  61. GRIN (1990) Germplasm resources information network. United States Department of Agriculture, USA, Washington. Retrieved from Accessed on Aug 2017
  62. Herre EA, Jander KC, Machado CA (2008) Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Ann Rev Ecol Evol Syst 39:439–458CrossRefGoogle Scholar
  63. IBPGR (1986) Ficus carica L. In: Genetic resources of tropical and sub-tropical fruits and nuts. RomeGoogle Scholar
  64. IPGRI and CIHEAM (2003) Descriptors for fig (Ficus carica L.). International Plant Genetic Resources Institute (IPGRI), Rome, Italy; International Center for Advanced Mediterranean Agronomic Studies (CIHEAM), ParisGoogle Scholar
  65. Janick J (2012) Fruit breeding: past, present and future. Paper presented at the XXII Congresso Brasileiro de Fruticultura, Purdue University, West Lafayette, IN, 22–26 Oct 2012Google Scholar
  66. Jianye C, Yuxia N, Zilan Z et al (1997) Observation on biological characteristics of fig (Ficus carica L.). J Fruit Sci 14(1):16–20Google Scholar
  67. Jona B, Grihaudo I (1991) Ficus spp. In: Baja YPS (ed) Biotechnology in agriculture and forestry, vol 16. Springer, Berlin, pp 76–93Google Scholar
  68. Karadeniz T (2008) Clonal selection in “Patlican” at Black Sea region of Turkey. Acta Hortic 798:135–138CrossRefGoogle Scholar
  69. Khadari B, Lashermes P, Kjellberg F (1995) RAPD fingerprints for identification and genetic characterization of fig (Ficus carica L.) genotypes. J Genet Breed 49:77–86Google Scholar
  70. Khadari B, Oukabli A, Ater M et al (2004) Molecular characterization of Moroccan fig germplasm using inter simple sequence repeat and simple sequence repeat markers to establish a reference collection. Hortic Sci 40:29–32Google Scholar
  71. Kjellberg F, Gouyon PH, Ibrahim M et al (1987) The stability of the symbiosis between dioecious figs and their pollinators: a study of Ficus carica L. and Blastophaga psenes L. Evol 41:653–660CrossRefGoogle Scholar
  72. Kjellberg F, Valdeyron G (1984) The pollination of fig tree (Ficus carica L.) and its control in horticulture. Acta Oecol 5(4):407–412Google Scholar
  73. Koka T (2008) Fig germplasm conservation in Albania. Acta Hortic 798:77–80CrossRefGoogle Scholar
  74. Kulina M, Djurdjic Z, Vico G (2002) Pomological traits of some once-bearing figs in the area of Trebinjie. Acta Agric Serbica 7(13):9–15Google Scholar
  75. Lahbib T (1984) Etude pomologique des variétés de figuier (Ficus carica L.) répertoriées dans le Sahel tunisien. Mémoire de fin de troisième cycle, Institut National d’Agronomie de Tunis, Tunisie, TunisGoogle Scholar
  76. Levina EK (1984) A study of olive, fig and persimmon at the Turkmen experimental station of the VIR Sbornik Nauchnykh Trudov po. Prikladniui Botanike Genetike I Selektsii 83:41–45Google Scholar
  77. Liamoca Zarate RM, Landsann J, Campos FAP (2006) Isolation and culture of protoplasts from cell suspensions of cactus pear (Opuntia ficus-indica mill.). Acta Hortic 728:93–96. Scholar
  78. Lionakis SM (1996) Genetic resources of plant grown in Greece and included in the MESFIN network. In: Galan SV (ed) In: Proceedings of International MESFIN plant genetic resources meeting, Tenerife, Spain, p 25Google Scholar
  79. Lopez Corrales M, Gella R, Martin JA, Toribio F (1998) Elimination of fig mosaic from fig shoot-tip cultures by thermotherapy. Acta Hortic 480:173–177Google Scholar
  80. Mars M (2003) Fig (Ficus carica.L.) genetic resources and breeding. Acta Hortic 605:19–26CrossRefGoogle Scholar
  81. Mars M, Chatti K, Saddoud O et al (2008) Fig cultivation and genetic resources in Tunisia. An overview. Acta Hortic 798:27–32CrossRefGoogle Scholar
  82. Mars M, Marrakchi M, Chebli T (1998) Multivariate analysis of Fig (Ficus carica. L.) germplasm in southern Tunisia. Acta Hortic 480:75–81CrossRefGoogle Scholar
  83. Mazri-Kartout C, Aid-Houchi A (2001) Contribution à la caractérisation de trois variétés de figuier dans la commune de Fréha Wilaya de Tizi-Ouzou. Recherche Agronomique. INRA d’Algérie. Rev Semes 14:53–63Google Scholar
  84. McCouch SR, Chen X, Panaud O et al (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99CrossRefPubMedGoogle Scholar
  85. Melgarejo P, Hernandez F, Martinez JJ et al (2003) Organic acids and sugars from first and second crop fig juices. Acta Hortic 605:237–239CrossRefGoogle Scholar
  86. Messaoudi Z (2003) Propagation of five fig (Ficus carica.L.) varieties under field conditions Acta Hortic 605:103–106Google Scholar
  87. Muriithi LM, Rangan TS, Waite BH (1982) In vitro propagation of fig through shoot tip culture. Hortic Sci 17:86–87Google Scholar
  88. Nabli MA (1989) Essai de synthèse sur la végétation et la phyto-écologie tunisienne. Elément de Botanique et de phyto-écologie. Faculté des Sciences de Tunis et UNESCO, Tunisie, TunisGoogle Scholar
  89. Nahdi S, Aljane F (2014) Identification des virus associés à la maladie de mosaïque (FMD) du figuier (Ficus carica L.) en Tunisie. Rev Rég Arid 34(2):35–45Google Scholar
  90. Nobre J, Romano A (1998) In vitro cloning of Ficus carica L. adult trees. Acta Hort 480:161–164CrossRefGoogle Scholar
  91. Oukabli A, Khadari B, Roger JP et al (2003) Genetic variability in Moroccan fig cultivars (Ficus carica L.) based on morphological and pomological data. Acta Hortic 605:311–318CrossRefGoogle Scholar
  92. Ozeker E, Isfandiyaroglu M (1998) Evaluation of table fig cultivars in Cesme Peninsula. Acta Hortic 480:55–60CrossRefGoogle Scholar
  93. Özen M, Kocataş H, Çobanoğlu F et al (2017) Mutation breeding studies on fig. Acta Hortic 1173:93–98. Scholar
  94. Panis B, Swennen R, Engelmann F (2001) Cryopreservation of plant germplasm. Acta Hortic 560:79–86CrossRefGoogle Scholar
  95. Papadopoulou K, Ehaliotis C, Tourna M et al (2002) Genetic relatedness among dioecious Ficus carica L. Cultivars by random amplified polymorphic DNA analysis, and evaluation of agronomic and morphological characters. Genetica 114:183–194CrossRefPubMedGoogle Scholar
  96. Petrova EF, Voronova OG (1984) Biological characteristics of figs in Abkhazia. Naucho Tekhnicheskii Byulletion 141:163–166Google Scholar
  97. Piga A, Del Caro A, Milella G et al (2008) HPLC analysis of polyphenols in peel and pulp of fresh figs. Acta Hortic 798:301–306CrossRefGoogle Scholar
  98. Polat AA, Ozkaya M (2005) Selection studies on fig in the Mediterranean region of Turkey. Pak J Bot 37(3):567–574Google Scholar
  99. Rodrigues MGF, Martins ABG, Desidério JA et al (2012) Genetic characterization of fig tree mutants with molecular markers. Genet Mol Res 11(3):1990–1996Google Scholar
  100. Roger JP (2003) L’origine des arbres fruitiers. Conservatoire botanique national méditerranéen de Porquerolles. Antenne Provence-Alpes, Côte d’Azur, FranceGoogle Scholar
  101. Saddoud O, Baraket G, Chatti et al (2008) Morphological variability of fig (Ficus carica L.) cultivars. Int J Fruit Sci 8(1–2):35–51Google Scholar
  102. Sahin N (1998) Fig adaptation studies in Western Turkey. Acta Hortic 480:61–70CrossRefGoogle Scholar
  103. Salhi-Hannachi A, Mars M, Chatti K et al (2003) Specific genetic markers for Tunisian fig germplasm: evidence of morphological traits, random amplified polymorphism DNA and inter simple sequence repeats markers. J Genet Breed 57:125–136Google Scholar
  104. Santoni S, Faivre- Rampant P, Prado E et al (2000) Marqueurs moléculaires pour l’analyse des ressources genetics et amelioration des plantes. Cah Agric 9(4):311–327Google Scholar
  105. Simon CJ (2002) Fabulous figs featured in California collection. Agric ResGoogle Scholar
  106. Singh A, Prakash J, Meghawal PR, Ranpise SA (2015) The fig (Ficus carica). In: Ghosh SN (ed) Breeding of underutilized fruit crops Part I. Jaya Publishing House, New Delhi, pp 149–179Google Scholar
  107. Singh G (2014) Molecular characterization in fruit crops—a review. Int J Agr Sci Vet Med 2(3):81–101Google Scholar
  108. Soliman HIA, Abd Alhady MRA (2017) Evaluation of salt tolerance ability in some fig (Ficus carica L.) cultivars using tissue culture technique. J App Biol Biotechnol 5(6):29–39. Scholar
  109. Soloman A, Golubowicz S, Yablowicz Z et al (2006) Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J Agric Food Chem 54(20):7717–7723CrossRefGoogle Scholar
  110. Storey WB (1975) Figs. In: Janick J, Moore JN (eds) Advances and fruit breeding Indiana. Purdue University Press, West Lafayette, Indiana, pp 568–589Google Scholar
  111. Storey WB (1976) Fig Ficus carica (Moraceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 205–208Google Scholar
  112. Storey WB (1977) The fig (Ficus carica Linnaeus): its biology, history, culture, and utilization. Jurupa Mountains Cultural Center, Riverside, CaliforniaGoogle Scholar
  113. Stover E, Aradhya M (2008) Fig genetic resources and research at the US national Clonal Germplasm repository in Davis, California. Acta Hortic 798:57–68CrossRefGoogle Scholar
  114. Taha RA, Mustafa NS, Hassan SA (2013) Protocol for micropropagation of two Ficus carica cultivars. World J Agric Sci 9(5):383–388. Scholar
  115. Towill LE, Bajaj YPS (eds) (2002) Biotechnology in agriculture and forestry 50. Cryopreservation of plant germplasm II. Springer, USAGoogle Scholar
  116. Tsantili E (1990) Changes during development of “Tsapela” fig fruits. Sci Hortic 44:227–234CrossRefGoogle Scholar
  117. Vallejo F, Marin JG, Tomas-Barberan FA (2012) Phenolic compound content of fresh and dried figs (Ficus carica L.). Food Chem 130:485–492CrossRefGoogle Scholar
  118. Veberic R, Colaric M, Stampar F (2008) Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem 106(1):153–157CrossRefGoogle Scholar
  119. Vidaud J, Baccaunaud M, Caraglio Y et al (1997) Le figuier. Centre Technique et Interprofessionnel des Fruits et de Légumes, ParisGoogle Scholar
  120. Vinson JA (1999) The function food proprieties of figs. Am Assoc Cereal Chem 44(2):82–87Google Scholar
  121. Wang Z, Cui Y, Vainstein A et al (2017) Regulation of fig (Ficus carica L.) fruit color: metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Front Plant Sci 8:1–15Google Scholar
  122. Yakushiji H, Morita T, Jikumaru S et al (2012) Interspecific hybridization of fig (Ficus carica L.) and Ficus erecta Thunb., a source of Ceratocystis canker resistance. Euphy 183:39–47Google Scholar
  123. Yancheva D, Golubowicz S, Yablowicz Z et al. (2005) Efficient Agrobacterium-mediated transformation and recovery of transgenic fig (Ficus carica L.) plants. Plant Sci 168:1433–1441.
  124. Zigo A, Stampar F (2002) Characterization of isozymes variation in common fig (Ficus carica L.). Research Report. University of Ljubljana, Biotechnical Faculty, Institute of Fruit Growing, Viticulture and Vegetable Growing, Slovenia, LjubljanaGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Arid Land and Oasis Cropping LaboratoryInstitute of Arid Regions of MedenineMedenineTunisia
  2. 2.Department of Plant Breeding and Crop ProtectionHigher School of AgricultureEl KefTunisia

Personalised recommendations