Genetic Improvement of Strawberry (Fragaria × ananassa Duchesne)

  • Ather-uz-ZamanEmail author
  • Jameel M. Al-Khayri
  • Rafiul Islam


The modern cultivated strawberry (Fragaria × ananassa Duchesne) is one of the world’s most appetizing and delicious fruits. The genotypic diversity, highly heterozygous nature and broad range of environmental adaptation have made this fruit unique. It is a good source of fructose, glucose, vitamin-A, vitamin-C, and minerals like potassium, calcium and phosphorus. The anticancer effects of individual phytochemical constituents of strawberries, as well as whole strawberry extracts, have been demonstrated. Research on the antioxidant content of strawberries is providing us with more and more evidence about decreased lipid peroxidation in blood vessel linings following consumption, and less malondialdehyde formation as well. Breeding and induction of somaclonal variation are useful to create new genetic variability for the improvement of strawberry genotypes. The application of classical breeding and biotechnological approaches are potential tools to improve yield and taste of strawberry. Different diseases like crown rot and Verticillium significantly impede yield. Somaclonal variation was discussed as a breeding tool for future improvement of strawberry varieties. Although the chapter is predominantly written and arranged emphasizing the specific research on biotechnology and genetic improvement of strawberry; nevertheless information on origin, taxonomy, breeding, mutagenesis and parthenocarpy are also presented.


Anthocyanin Biotechnology Breeding In vitro Germplasm Medicinal Molecular markers Mutagenesis 


  1. Aaby K, Ekeberg D, Skrede G (2007) Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J Agric Food Chem 55:4395–4412CrossRefPubMedGoogle Scholar
  2. Adak N, Pekmezci M, Gubbuk H (2001) Investigations on propagation of different strawberry cultivars by meristem culture. Zirrat Facult J Medit Univ 14:119–126Google Scholar
  3. Ahmadi H, Bringhurst RS, Voth V (1990) Modes of inheritance of photoperiodism in Fragaria. J Am Soc Hortic Sci 115:146–152Google Scholar
  4. Afrasiab H, Iqbal J (2010) In vitro techniques and mutagenesis for the genetic improvement of potato cvs. Desiree and Diamante. Pak J Bot 42:1629–1637Google Scholar
  5. Alvarez-Suarez JM, Giampieri F, Tulipani S (2014) One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J Nutr Biochem 25(3):289–294CrossRefPubMedGoogle Scholar
  6. Anderson HM, Abbott AJ, Wildshire S (1982) Micro-propagation of strawberry plants in vitro—effect of growth regulators on incidence of multi-apex abnormality. Sci Hortic 16(4):331–341CrossRefGoogle Scholar
  7. Andersen M, Fossen T, Torskangerpoll K et al (2004) Anthocyanin from strawberry (Fragaria ananassa) with the novel aglycone, 5-carboxypyranopelargonidin. Phytochemistry 65:405–410CrossRefPubMedGoogle Scholar
  8. Anna FD (2002) Effects of runner order on strawberry plug plant fruit production. Acta Hortic 567:301–303CrossRefGoogle Scholar
  9. Anttonen MJ, Hoppula KI, Nestby R et al (2006) Influence of fertilization, mulch color, early forcing, fruit order, planting date, shading, growing environment, and genotype on the contents of selected phenolics in strawberry (Fragaria × ananassa Duch.) fruits. J Agr Food Chem 54(7):2614–2620CrossRefGoogle Scholar
  10. Anuradha S, Sehrawat K, Dahiya SD (2017) Assessment of genetic integrity in plants regenerated by organogenesis from callus culture of strawberry. Chem Sci Rev Lett 6(21):130–136Google Scholar
  11. Arnau G, Lallemand J, Bourgoin M (2002) Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica 129(1):69–79CrossRefGoogle Scholar
  12. Arulsekar S (1979) Verticillium wilt resistance in the cultivated strawberries and preliminary studies on isozyme genetics in Fragaria. Ph.D. Thesis, California, USAGoogle Scholar
  13. Ashrafuzzaman M, Faisal SM, Yadav D et al (2013) Micropropagation of strawberry (Fragaria ananassa) through runner culture. Bangladesh J Agr Res 38(3):467–472Google Scholar
  14. Badawi MA, Alphonse M, Bondok AZ, Hosni YA (1990) Effect of some disinfectant treatments and different sodium chloride concentrations on the in vitro growth of some strawberry cultivars. Egypt J Hortic 17:17–24Google Scholar
  15. Bailey LH (1894) Whence came the cultivated strawberry. Bot Gaz 28(328):293–306Google Scholar
  16. Bevan MW, Uauy C (2013) Genomics reveals new landscapes for crop improvement. Genome Biol 14:206CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bei L, Bangzhu P (2017) Modeling and optimization of process parameters for strawberry osmotic dehydration using central composite rotatable design. J Food Qual (Art ID 2593213):1–7Google Scholar
  18. Bhat S, Sharma S, Sharma KV (2017) Effect of in vitro mutagenesis on in vivo growth characteristics of strawberry cv. camarosa. Int J Curr Microbiol Appl Sci 6(8):3406–3417Google Scholar
  19. Bhatt ID, Dhar U (2000) Micropropagation of Indian wild strawberry. Plant Cell Tiss Org Cult 60(2):83–88Google Scholar
  20. Biswas MK, Dutt M, Roy UK et al (2009) Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits. Sci Hortic 122:409–416CrossRefGoogle Scholar
  21. Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29CrossRefPubMedGoogle Scholar
  22. Bonet J, Monfort A (2011) Structural genomic resources in Fragaria genus. In: Husaini AM, Mercado JA (eds) Genomics, transgenics, molecular breeding and biotechnology of strawberry. Global Sci Books, UK, pp 76–84Google Scholar
  23. Boxus P (1989) Review on strawberry mass propagation. Acta Hortic 265:309–320CrossRefGoogle Scholar
  24. Boxus P (1999) Micropropagation of strawberry via axillary shoots proliferation. In: Hall J (ed) Plant cell culture protocols. Methods in molecular biology. Part III Plant propagation in vitro. Humana Press Inc., Totowa NJ, pp 103–114CrossRefGoogle Scholar
  25. Bradford E, Hancock JF, Warner RM (2010) Interactions of temperature and photoperiod determine expression of repeat flowering in strawberry. J Am Soc Hortic Sci 135:102–107Google Scholar
  26. Bringhurst RS, Voth V (1981) Breeding for the high productivity, large fruit size. In: Childers NF (ed) The strawberry cultivars for marketing. Horticulture Publication, Gainesville, FloridaGoogle Scholar
  27. Butts KM (1991) Bee attractants: improving strawberry quality? Citrus Veg Mag 55(3):16–17Google Scholar
  28. Cassidy A, Rogers G, Peterson JJ (2015) Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr 102(1):172–181CrossRefPubMedPubMedCentralGoogle Scholar
  29. Castro P, Bushakra JM, Stewart P et al (2015) Genetic mapping of day-neutrality in cultivated strawberry. Mol Breed 35:1–16CrossRefGoogle Scholar
  30. Chagnon M, Gingars J, Oliveira D (1993) Complementary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). J Econ Entomol 86:416–420CrossRefGoogle Scholar
  31. Chambers A, Carle S, Njuguna W et al (2013) A genome enabled, high-throughput, and multiplexed fingerprinting platform for strawberry (Fragaria L.). Mol Breed 31:615–629CrossRefGoogle Scholar
  32. Chambers AH, Pillet J, Plotto A et al (2014) Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach. BMC Genom 15:217CrossRefGoogle Scholar
  33. Chang YD, Lee MY, Mah YI, Richards KW (2001) Pollination on strawberry in the vinyl house by Apis mellifera L. and A. cerana Fab. Acta Hortic 561:257–262CrossRefGoogle Scholar
  34. Childers NF, Morris JR, Sibbette GS (1995) Modern fruit sciences. Horticulture Publication, Gainesville, Florida, USAGoogle Scholar
  35. Costa AF, Teodoro PE, Bhering LL et al (2017) Selection of strawberry cultivars with tolerance to Tetranychus urticae and high yield under different managements. Genet Mol Res 28:16(2) gmr16029599Google Scholar
  36. Crock JE, Shanks CH, Baritt BH (1982) Resistance in Fragaria chiloensis and Fragaria ananassa to aphid Chaetosiphon fragaefolii and C. thomasi. Hortic Sci 17:959–960Google Scholar
  37. Cruden R, Hermann S (1983) Studying nectar: some observations on the art. In: Bentley B, Elias T (eds) The biology of nectarines. Columbia Univ Press, New York, USA, pp 223–241Google Scholar
  38. Cruz-Rus E, Sesmero R, Ángel-Pérez JA et al (2017) Validation of a PCR test to predict the presence of flavor volatiles mesifurane and γ-decalactone in fruits of cultivated strawberry (Fragaria × ananassa) Mol Breed 37(131):6–15Google Scholar
  39. Dale A, Sjulin TM (1990) Few cytoplasms contribute to North American strawberry cultivars. Hortic Sci 25:1341–1342Google Scholar
  40. Damiano C, Monticelli S, Frattarelli A, Nicolini S, Corazza L (1997) Somaclonal variability and in vitro regeneration of strawberry. Acta Hortic (447):87–94Google Scholar
  41. Darrow GM (1966) The Strawberry. History, breeding and physiology. Holt, Rinehart and Winston, New YorkGoogle Scholar
  42. Davis TM (2015) Geographical distribution of strawberries. University of New Hampshire New Hampshire Agricultural Experiment Station, Durham, NH.
  43. Davis TM, Yu H (1997) A linkage map of the diploid strawberry, Fragaria vesca. J Hered 88:215–221CrossRefGoogle Scholar
  44. Davis TM, Folta KM, Shields M et al (2008) Gene pair markers: an innovative tool for comparative linkage mapping. In: Takeda F, Handley DT, Poling EB (eds) Proceedings of the North American Strawberry Symposium. North American Strawberry Growers Association, Kemptville, ON Canada, pp 105–107Google Scholar
  45. Debnath SC (2009) Characteristics of strawberry plants propagated by in vitro bioreactor culture and ex vitro propagation method. Eng Life Sci 9(3):239–246CrossRefGoogle Scholar
  46. Debnath CS (2006) Zeatin overcomes thidiazuron-induced inhibition of shoot elongation and promotes rooting in strawberry culture. J Hortic Sci Biotechnol 81(3):349–354Google Scholar
  47. Debnath SC, Jaime A, Teixeira-Silva T (2007) Strawberry culture in vitro: applications in genetic transformation and biotechnology. Fruit Vegetable Cereal Sci Biotechnol 1(1):1–12Google Scholar
  48. Debnath SC, Khanizadeh S, Jamieson AR et al (2008) Inter simple sequence repeat (ISSR) markers to assess genetic diversity and relatedness within strawberry genotypes. Can J Plant Sci 88:313–322CrossRefGoogle Scholar
  49. Demirsoy L, Demirsoy H, Balci G (2012) Different growing conditions affect nutrient content, fruit yield and growth in strawberry. Park J Bot 44(1):124–129Google Scholar
  50. Diengngan S, Murthy NS (2014) Influence of plant growth promoting substances in migropropagation of Strawberry cv. Festival. Bioscan 9(4):1491–1493Google Scholar
  51. Doving A, Mage F (2001) Prediction of strawberry fruit yield. Acta Agr Scand Sect B, Soil Plant Sci 51:35–42Google Scholar
  52. Duchesne AN (1766) Histoire naturelle des fraisiers. Didot le jeune, Paris, France.
  53. Durner FF, Poling EB, Albregts EA (1996) Early season responses of selected strawberry cultivars to photoperiod and chilling in a Florida winter production system. J Amer Soc HorticGoogle Scholar
  54. Ellis JR (1962) Fragaria-Potentilla intergeneric hybridization and evolution of Fragaria. Proc Linn Soc London 173:99–106CrossRefGoogle Scholar
  55. Fait A, Hanhineva K, Beleggia R et al (2008) Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Phys 148:730–750CrossRefGoogle Scholar
  56. Fekry AW, Wahdan MH (2017) Influence of substrates on in vitro rooting and acclimatization of micro propagated strawberry (Fragaria × ananassa Duch.). Mid East J Agr Res 6(3):682–691Google Scholar
  57. Folta KM (2013) Functionalizing the strawberry genome—a review. Int J Fruit Sci 13:162–174CrossRefGoogle Scholar
  58. Folta KM, Klee HJ (2016) Sensory sacrifice when we mass-produce mass produce. Hortic Res 3:article 16032Google Scholar
  59. Food and Agriculture Organization of the United Nations (2017) FAOSTAT database.
  60. Galvão GA, Resende VL, Maluf RW et al (2017) Breeding new improved clones for strawberry production in Brazil. Acta Sci 39(2):149–155CrossRefGoogle Scholar
  61. Gantait S, Mandal N, Nandy S (2011) Advances in micropropagation of selected aromatic plants: a review on vanilla and strawberry. Am J Biochem Mol Biol 1(1):1–19CrossRefGoogle Scholar
  62. Garren R (1980) Causes of misshaped strawberries. In: Childers NF (ed) The strawberry. Horticulture Publication, Gainesville, Florida, pp 326–335Google Scholar
  63. Gasperotti M, Masuero D, Mattivi F (2015) Overall dietary polyphenol intake in a bowl of strawberries: the influence of Fragaria spp. in nutritional studies. J Func Foods 18, Part B:1057–1069Google Scholar
  64. Gecer MK (2009) Determination of production capabilities of strawberry runner plants and their fruit yield characteristics in Van ecological conditions. Ph.D. thesis, Department of Horticulture, YuzuncuYil Univ, Van, TurkeyGoogle Scholar
  65. Gezan S, Osorio L, Verma S, Whitaker V (2017) An experimental validation of genomic selection in octoploid strawberry. Hortic Res 4:16070.
  66. Giampieri F, Forbes-Hernandez TY, Gasparrini M et al (2017) The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Ann New York Acad Sci 1398(1):62–71CrossRefGoogle Scholar
  67. Giampieri F, Forbes H, Gasparrini F (2015) Strawberry as a health promoter: an evidence based review. Food Funct 6(5):1386–1398CrossRefPubMedGoogle Scholar
  68. Giampieri F, Tulipani S, Alvarez-Suarez JM (2012) Thestrawberry: composition, nutritional quality, and impact on human health. Nutrition 28(1):9–19CrossRefGoogle Scholar
  69. Gianna F, Tiziana B, Alberto B, Davide N (2010) Cherry antioxidants: from farm to table. Molecules 15:6993–7005CrossRefGoogle Scholar
  70. Green AE, Davis TM, Dale A, Luby JJ (1990) Regeneration of Fragaria vesca plants from leaf tissue. Proceedings of the 3rd North American Strawberry Conference, February 14–16, Houston, Texas, pp 124–125Google Scholar
  71. Gulsoy E, Yilmaz H (2004) The effects on adaptation of some strawberry cultivars grown under different tunnels in Van ecological conditions. YYU J Inst Nat Appl Sci 9(1):50–57Google Scholar
  72. Guo R, Xue L, Luo G et al (2017) Investigation and taxonomy of wild Fragaria resources in Tibet, China. GenetRes Crop Evol 65(2):405–415CrossRefGoogle Scholar
  73. Haddadi F, Aziz M (2010) Micropropagation of strawberry cv. camarosa prolific shoot regeneration from in vitro shoot tips using thidiazuron with N6 benzylamino-purine. Hortic Sci 45(3):453–456Google Scholar
  74. Hall AM, Jin XI (2017) Integrated control of strawberry powdery mildew. Acta Hortic 1156:771–775CrossRefGoogle Scholar
  75. Hammaudeh HY, Suwwan MA, Abu-Quoud HA, Shibli RA (1998) Micropropagation and regeneration of honeoye strawberry. Dirasat Agric Sci 25:170–178Google Scholar
  76. Hummer KE, Nathewet P, Yanagi T (2009) Decaploidy in Fragaria iturupensis (Rosaceae). Am J Bot 96(3):713–716CrossRefPubMedGoogle Scholar
  77. Hammerschlag (2006) Germplasm releases of ‘Licoln logan’ a tissue culture-derived genetic thornless ‘loganberry’. Fruit Var J 40:134–135Google Scholar
  78. Hammoudeh HY, Suwwan MA, Quoud HA et al (1998) Micropropagation and regeneration of honeoye strawberry. Agric Sci 25(2):170–178Google Scholar
  79. Hancock JF (1999) Strawberries. Crop production science in horticulture. Series No 11, CABI, Wallingford, UK, pp 213–237Google Scholar
  80. Hancock JF, Scott DH, Lawrence FJ (1996) Strawberries. In: Janick J, Moor JN (eds) Fruit breeding, vol III. Vine and small fruit crops. John Wiley and Sons Inc, Hoboken NJ, pp 449–470Google Scholar
  81. Hancock JF, Sooriyapathirana SS, Bassil NV et al (2016) Public availability of a genotyped, segregating population may foster marker assisted breeding (MAB) and quantitative trait loci (QTL) discovery: an example using strawberry. Front Plant Sci 7:619.
  82. Hannum SM (2004) Potential impact of strawberries on human health. Crit Rev Food Sci Nutr 44:1–17CrossRefGoogle Scholar
  83. Hawkins C, Caruana J, Li J et al (2017) An eFP browser for visualizing strawberry fruit and flower transcriptomes.
  84. Haymes KM, Weg WE, Arens P et al (2000) Development of SCAR markers linked to a Phytophthora fragariae resistance gene and their assessment in European and North American strawberry genotypes. J Am Soc Hortic Sci 125:330–339Google Scholar
  85. Heide OM, Stavang JA, Sonsteby A (2013) Physiology and genetics of flowering in cultivated and wild strawberries: a review. J Hortic Sci Biotechnol 88:1–18CrossRefGoogle Scholar
  86. Hirakawa H, Shirasawa K, Kosigi S et al (2014) Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res 21:169–181CrossRefPubMedGoogle Scholar
  87. Hokanson SC, Maas JL (2001) Strawberry biotechnology. Plant Breed Rev 21:139–180Google Scholar
  88. Hollender CA, Kang C, Darwish O et al (2014) Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Phys 165:1062–1075CrossRefGoogle Scholar
  89. Honjo M, Nunome T, Kataoka S et al (2016) Simple sequence repeat markers linked to the ever bearing flowering gene in long-day and day-neutral cultivars of the octoploid cultivated strawberry Fragaria × ananassa. Euphytica 209:291–303CrossRefGoogle Scholar
  90. Huang Y, Park E, Edirisinghe I (2016) Maximizing the health effects of strawberry anthocyanins: understanding the influence of the consumption timing variable. Food Funct 7(12):4745–4752CrossRefPubMedGoogle Scholar
  91. Hummer K (2008) Global conservation strategy for Fragaria (strawberry). Scr Hortic 6:1–87Google Scholar
  92. Hummer K, Hancock JF (2009) Strawberry genomics: botanical history, cultivation, traditional breeding, and new technologies. In: Folta K, Gardiner S (eds) Genetics and genomics of Rosaceae. Springer Science Business Media, New York, pp 413–436CrossRefGoogle Scholar
  93. Igarashi K, Inagaki K (1991) Effects of the major anthocyanin of wild grape (Vitis coignetiae) on serum lipid levels in rats. Agr Biol Chem 55:285–287Google Scholar
  94. Igarashi K, Abe S, Sato J (1990) Effects of atsumi-kabu (red turnip, Brassica campestris L.) anthocyanin on serum cholesterol levels in cholesterol-fed rats. Agr Biol Chem 54:171–175Google Scholar
  95. Infante R, Mazzara M, Rosati P (1998) Growth estimation of in vitro cultured callus and plant regeneration from leaf disk and petiole callus of musk strawberry (Fragaria moschata Duch.) subcultured for 18 months. Engei Gakkai zasshi 67(1):39–43Google Scholar
  96. Jain SM, Pehu E (1992) The prospects of tissue culture and genetic engineering in strawberry improvement. Acta Agric Scand, Sec B, Soil Plant Sci 42:133–139Google Scholar
  97. Jain SM (1997) Creation of variability by mutation and tissue culture for improving plants. Acta Hortic 447:69–78CrossRefGoogle Scholar
  98. Jain SM (2010) Mutagenesis in crop improvement under the climate change. Roman Biotechnol Lett 15(2):88–106Google Scholar
  99. James DJ, Passey AJ, Barbara DJ (1990) Regeneration and transformation of apple and strawberry using disarmed Ti-Binary vectors. Acta Hortic 280:495–502CrossRefGoogle Scholar
  100. Jenkins DJA, Nguyen TH, Kendall CWC (2008) The effect of strawberries in a cholesterol-lowering dietary portfolio. Metabolism 57(12):1636–1644CrossRefPubMedGoogle Scholar
  101. Jeong HB, Ha SH, Kang KY (1996) In vitro multiplication of strawberry by vertical rotary culture of shoot tip. RDA J Agric Sci Biotechnol 38:273–278Google Scholar
  102. Jones JK (1955) Cytogenetic studies in genera Fragaria and Potentilla. Ph.D. Thesis, University of Reading, UKGoogle Scholar
  103. Jones OP, Waller BJ (1988) The production of strawberry plants from callus cultures. Plant Cell Tiss Org Cult 12:235–241CrossRefGoogle Scholar
  104. Jungnickel F (1988) Strawberries (Fragaria spp and hybrids). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 6. Springer-Verlag, Berlin, pp 38–103Google Scholar
  105. Kang C, Darwish O, Geretz A et al (2013) Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell Online 25:1960–1978CrossRefGoogle Scholar
  106. Kang KY, Jeong JS, Lee SS (1994) Study on the tissue culture of strawberry (Fragaria × ananassa). Multiple propagation of strawberry plants by axillary bud culture. RDA J Agric Sci Biotechnol 36:196–200Google Scholar
  107. Karim R, Ahmed F, Krishna R, Ara T, Islam R and Hossain M (2015) Varietal improvement of strawberry (Fragaria × ananassa Dutch.) through somaclonal variation using in vitro techniques, J Agr Sci Tech Vol 17: 977–986Google Scholar
  108. Karp A (1992) The role of growth regulators in somaclonal variation. Br Soc Plant Growth Regul Ann Bull 2:1–9Google Scholar
  109. Karhu S, Hakala K (2002) Micropropagated strawberries on the field. Acta Hortic 2:182Google Scholar
  110. Kasumi M (2002) The effect of gamma-ray irradiation to strawberry (Fragaria × ananassa Duch.) calli on shoot regeneration achene formation and morphological variation of regenerant. J Japan Soc Hortic Sci 71(3):419–423Google Scholar
  111. Kaushal K, Nath AK, Kaundal P et al (2004) Studies on somaclonal variation in strawberry (Fragaria × ananassa Duch.) cultivars. Acta Hortic 662:269–275CrossRefGoogle Scholar
  112. Kaur R, Gautam H, Sharma DR (2003) A low cost strategy for micropropagation of strawberry (Fragaria × ananassa Duch.) cv. Chandler. Acta Hortic 696:129–133Google Scholar
  113. Kelly JV, Natalia S, Jacob AT et al (2017) Genotyping-by-sequencing enables linkage mapping in three octoploid cultivated strawberry families. Peer J. Published online 30 Aug 2017Google Scholar
  114. Khan S, Spoor W (2004) A study of an in vitro callus culture and regeneration system from leaf disc explants in strawberry (Fragaria ananassa) cv. Tango. Int J Biol Biotechnol 1:423–428Google Scholar
  115. Kinet JM, Parmentier A (1989) The flowering behavior of micro-propagated strawberry plants: the influence of the number of subcultures on the multiplication medium. Acta Hortic 265:327–334CrossRefGoogle Scholar
  116. Koruza B, Jelaska S (1993) Influence of meristem culture and virus elimination on phenotypical modifications grapevine (Vitis vinifera L., cv. Refosk). Vitis 32:59–60Google Scholar
  117. Krishna H, Alizadeh M, Singh D et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3Biotech 6(3):54.
  118. Kulikov MI, Marchenko AL (2017) Genetic methods of creating new varieties of garden plants. Herald Russ Acad Sci 87(2):135–138CrossRefGoogle Scholar
  119. Kuras A, Korbin M, Zurawicz E (2004) Comparison of suitability of RAPD and ISSR techniques for determination of strawberry (Fragaria × ananassa Duch.) relationship. Plant Cell Tiss Organ Cult 79:189–193CrossRefGoogle Scholar
  120. Lal SD, Seth JN (1982) Studies on combining ability in strawberry (Fragaria x ananassa) II Fruit length, fruit diameter, fruit weight, ascorbic acid, total soluble solids and fruit yield. Can J Genet Cytol 24:479–483CrossRefGoogle Scholar
  121. Lal M, Sharma S, Hegde MV (2003) Micropropagation of strawberry (Fragaria × ananassa Duch.). Indian J Agric Res 37:231–234Google Scholar
  122. Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theoret. Appl. Genetics 60:197–214.
  123. Larson KD (1994) Strawberry. In: Handbook of environmental physiology of fruit crops, vol 1. CRC Press, Inc, pp 271–297Google Scholar
  124. Ledesma NA, Nakata M, Sugiyama N (2008) Effect of high temperature stress on the reproductive growth of strawberry cvs. Sci Hortic 116:186–193CrossRefGoogle Scholar
  125. Lee S, Noh HY, Verma S, Whitaker MV (2016) DNA, technology and Florida strawberries. University of Florida, IFAS Extension, pp 1–4Google Scholar
  126. Lestari EG (2006) In vitro selection and somaclonal variation for biotic and abiotic stress tolerance. Biodiversitas 7:297–301CrossRefGoogle Scholar
  127. Lerceteau-Kohler E, Guerin G, Laigret F et al (2003) Characterization of mixed disomic and polysomic inheritance in the octoploid strawberry (Fragaria × ananassa) using AFLP mapping. Theor Appl Genet 107:619–628CrossRefPubMedGoogle Scholar
  128. Lieten F (1993) Effect of winter temperature on continuous culture of Elsanta. Fruitteelt 5:28–29Google Scholar
  129. Liston A, Cronn R, Ashman TL (2014) Fragaria: A genus with deep historical roots and ripe for evolutionary and ecological insights. Am J Bot 101(10):1686–1699CrossRefPubMedGoogle Scholar
  130. Liu B, Poulsen EG, Davis TM, Jenkins G (2016) Insight into octoploid strawberry (Fragaria) subgenome composition revealed by GISH analysis of pentaploid hybrids. Genome 59(2):79–86Google Scholar
  131. Longhi S, Giongo L, Buti M et al (2014) Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. Hortic Res 1:1CrossRefPubMedPubMedCentralGoogle Scholar
  132. Lopez-Aranda JM, Pliego-Alfaro F, Lopez-Navidad I, Barcelo-Munoz M (1994) Micropropagation of strawberry (Fragaria × ananassa Duch.). Effect of mineral salts, benzyladenine levels and number of subcultures on the in vitro and field behaviour of the obtained microplants and the fruiting capacity of their progeny. J Hort Sci 69:625–637Google Scholar
  133. Luby JJ, Hancock JF, Ballington JR (1992) Collection of native strawberry germplasm in the pacific northwest and northern Rocky Mountains of the United States. Hortic Sci 27:12–17Google Scholar
  134. Mahmood S, Rashid H, Quraishi A et al (1994) Clonal propagation of strawberry through tissue culture. Pak J Agric Res 15(1):54–59Google Scholar
  135. Mahmoud BK, Najar A, Jedid E et al (2017) Tissue culture techniques for clonal propagation, viral sanitation and germplasm improvement in strawberry (Fragaria × ananassa Duch.). J Agr Biotechnol 47(2):2564–2576Google Scholar
  136. Mandave PC, Kuvalekar AA, Mantri LN et al (2017) Cloning, expression and molecular modeling of the anthocyanidin reductase (FaANR) gene during strawberry fruit development. Fruits 72(3):139–147CrossRefGoogle Scholar
  137. Maodobry ME Dziedzic, Lech W (1997) Shoot cultures of strawberry cv. Syriusz. Folia Hortic 9:105–112Google Scholar
  138. Masayuki N, Takeuchi Y, Miyanaga K et al (1999) High anthocyanin accumulation in the dark by strawberry (Fragaria ananassa) callus. Biotechnol Lett 21:695–699CrossRefGoogle Scholar
  139. Massetani F, Gangatharan R, Neri D (2011) Plant architecture of strawberry in relation to abiotic stress, nutrient application and type of propagation system. Genses Genom Genom 5(1):12–23Google Scholar
  140. Mezzetti B (2013) Breeding and biotechnology for improving the nutritional quality of strawberry. J Berry Res 3:127–133Google Scholar
  141. Mike G (2017) Alpha strawberry. In: New-supercharged-strawberry-sweet-find.
  142. Mikiciuk M, Rokosa M (2017) In vitro regeneration of Fragaria plants. Acta Sci Polonorum Hortorum Cultus 16(5):145–158CrossRefGoogle Scholar
  143. Mitra SK (1991) Strawberries. In: Bose TK, Mitra SK, Rathore DS (eds) Temperate fruit. Horticulture and Allied Publishers, Kolkata, India, pp 549–596Google Scholar
  144. Mohamed AS (2007) Somaclonal variation in micro-propagated strawberry detected at the molecular level. Int J Agr Biol 9(5):721–725Google Scholar
  145. Moisander J, Herrington M (2006) Effect of micro-propagation on the health status of strawberry planting material for commercial production of strawberry runners for Queensland. Acta Hortic 708:271–273CrossRefGoogle Scholar
  146. Moore G, Gale MD, Kurata N, FlaveU RB (1993) Molecular analysis of small grain cereal genomes: current status and prospects. Bio/Technol 11:584–589Google Scholar
  147. Moradi K, Otroshy M, Azimi MR (2011) Micropropagation of strawberry by multiple shoots regeneration tissue culture. J Agric Technol 7(6):1755–1763Google Scholar
  148. Morozova T (2003) Genetic stability of pure line of (Fragaria vesca L.) in micro-propagated and longterm storage in vitro. Acta Hortic 567:80–85Google Scholar
  149. Mouhu K, Kurokura T, Koskela EA et al (2013) The Fragaria vesca homolog of suppressor of over expression of constans1 represses flowering and promotes vegetative growth. Plant Cell 25:3296–3310CrossRefPubMedPubMedCentralGoogle Scholar
  150. Muola A, Weber D, Malm LE et al (2017) Direct and pollinator-mediated effects of herbivory on strawberry and the potential for improved resistance. Front Plant Sci.
  151. Nadeem MA, Nawaz MA, Shahid, MQ et al (2017) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing.
  152. Nehra NS, Stushnoff C (1989) Direct shoot regeneration from strawberry leaf disks. J Am Soc Hortic Sci 114(6):1014–1018Google Scholar
  153. Nehra NS, Stushnoff C, Kartha KK (1990) Regeneration of plants from immature leaf derived callus of strawberry (Fragaria × ananassa). Plant Sci 66:119–126CrossRefGoogle Scholar
  154. Nehra NS, Kartha KK, Stushnott C, Giles KL (1992) The influence of plant growth regulator concentrations and callus age on somaclonal variation in callus culture regenerants of strawberry. Plant Cell Tiss Org Cult 29(3):257–268Google Scholar
  155. Nishi S, Oosawa K (1973) Mass propagation method of virus-free strawberry plants through meristem callus. Jpn Agric Res Q 7:189–194Google Scholar
  156. Nyman M, Wallin A (1991) Protoplast technology in strawberry. Physil Plant 82(1):34–38Google Scholar
  157. Ohishi T (1999) Appropriate management of honeybee colonies for strawberry pollination. Honeybee Sci 20(1):9–16Google Scholar
  158. Olsson ME, Ekvall J, Gustavsson KE et al (2004) Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria × ananassa)effects of cultivar, ripening and storage. J Agric Food Chem 52:2490–2498CrossRefPubMedGoogle Scholar
  159. Oosumi T, Gruszewski HA, Blischak LA et al (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230CrossRefPubMedGoogle Scholar
  160. Palencia P, Martínez F, Medina JJ, López J (2013) Strawberry yield efficiency and its correlation with temperature and solar radiation. Hortic Bras 31(1):93–99CrossRefGoogle Scholar
  161. Partap U (2000) Pollination of strawberry by the Asian hive bee (Apis cerana). In: Matsuka M, Verma L, Wongsiri S et al (eds) Asian bees and beekeeping, Progress of research and development. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi. IndiaGoogle Scholar
  162. Passey AJ, Barrett KJ, James DJ (2003) Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria × ananassa Duch.) using a range of explant types. Plant Cell Rep 21:397–401CrossRefPubMedGoogle Scholar
  163. Patnaik J, Sahoo S, Debata BK (1999) Somaclonal variation in cell suspension culture-derived regenerants of Cymbopogonmartinii (Roxb.) Wats var. Motia. Plant Breed 118:351–354CrossRefGoogle Scholar
  164. Perrotte J, Guédon Y, Gaston A, Denoyes B (2016) Identification of successive flowering phases highlights a new genetic control of the flowering pattern in strawberry. J Exp Bot 67:5643–5655CrossRefPubMedPubMedCentralGoogle Scholar
  165. Petrovic D, Jacimovic PM (1990) Propagation of the strawberry cultivar Senga Sengana by in vitro meristem culture. Sci Practice 20:11–18Google Scholar
  166. Pinto MS, Carvalho JE, Lajolo FM (2010) Evaluation of anti-proliferative, anti-type 2 diabetes, and anti-hypertension potentials of ellagitannins from strawberries (Fragaria ananassa Duch.) using in vitro models. J Med Food 5:1027–1035CrossRefGoogle Scholar
  167. Popescu AN, Isac VS, Coman MS et al (1997) Somaclonal variation in plants regenerated by organogenesis from callus culture of strawberry (Fragaria × ananassa). Acta Hortic 439:89–96CrossRefGoogle Scholar
  168. Potter D, Eriksson T, Evans RC et al (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43CrossRefGoogle Scholar
  169. Powers L (1945) Strawberry breeding studies involving crosses between cultivated varieties (Fragaria x ananassa) and native rocky mountain strawberry (F. ovalis). J Agric Res 70:95–122Google Scholar
  170. Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tiss Organ Cult 64:185–210CrossRefGoogle Scholar
  171. Prichko TG, Germanova MG, Khilko LA (2014) Foliar feeding to increase yield value and quality in strawberry (Fragaria ananassa) under meteorological stresses. Agric Biol 5:120–126Google Scholar
  172. Quiroz AK, Berríos M, Carrasco B et al (2017) Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis L.). Biol Res 50:20. Scholar
  173. Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tissue Organ Cult 116:1–15CrossRefGoogle Scholar
  174. Reber JD, Eggett DL, Parker TL (2011) Antioxidant capacity interactions and a chemical/structural model of phenolic compounds found in strawberries. Int J Food Sci Nutr 23(10):344–352Google Scholar
  175. Reed BM (2007) Plant cryopreservation: a practical guide. Springer, New YorkGoogle Scholar
  176. Rengarajanm T, Yaacob NS (2016) The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Euro J Pharm 789:8–16CrossRefGoogle Scholar
  177. Rieger M (2006) Introduction to fruit crops. Haworth Press, Binghamton, NY, p 145.
  178. Sahijram L, Soneji J, Bollamma K (2003) Analyzing somaclonal variation in micropropagated bananas (Musa spp.) in vitro cell development. Biol Plant 39:551–556Google Scholar
  179. Salamone I, Falk S, Parks M et al (2013) Bioclimatic, ecological, and phenotypic intermediacy and high genetic admixture in a natural hybrid of octoploid strawberries. Am J Bot 100:939–950CrossRefPubMedGoogle Scholar
  180. Salinas NR, Zurn DJ, Mathey M et al (2017) Validation of molecular markers associated with perpetual flowering in octoploid Fragaria germplasm. Mol Breed 37:70–82CrossRefGoogle Scholar
  181. Sánchez-Sevilla JF, Horvath A, Botella MA et al (2015) Diversity arrays technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the octoploid cultivated strawberry (Fragaria × ananassa).
  182. Sargent DJ, Fernandéz F, Roja JJ et al (2009) A genetic linkage map of the cultivated strawberry (Fragaria × ananassa) and its comparison to the diploid Fragaria reference map. Mol Breed 24:293–303CrossRefGoogle Scholar
  183. Sato K, Nakayama M, Shigeta J (1996) Culturing conditions affecting the production of anthocyanin in suspended cultures of strawberry. Plant Sci 113:91–98CrossRefGoogle Scholar
  184. Savini G, Giorgi V, Scarano E et al (2008) Strawberry plant relationship through the stolon. Phys Plant 134:421–429CrossRefGoogle Scholar
  185. Schaart JG, Kjellsen TD, Mehli L, Iversen TH (2011) Towards the production of genetically modified strawberries which are acceptable to consumers. In: Husaini AM, Mercado JA (eds) Genomics, transgenic, molecular breeding and biotechnology of strawberry. Global Science Books, UK, pp 102–107Google Scholar
  186. Seeram NP (2006) Strawberry phytochemicals and human health: a review. UCLA Center for Human Nutrition, David Geffen School of Medicine, University California Los AngelesGoogle Scholar
  187. Seeram NP, Heber D (2006) Impact of berry phytochemicals on human health: effects beyond antioxidation. In: Ho C-T, Lee CY (eds) Lipid oxidation and antioxidants: chemistry, methodologies and health effects. ACS symposium series. Oxford University PressGoogle Scholar
  188. Serrano M, Mula HM, Zapata PJ et al (2009) Maturity stage at harvest determines the fruit quality and antioxidant potential after storage of sweet cherry cultivars. J Agric Food Chem 57:3240–3246CrossRefPubMedGoogle Scholar
  189. Shanks CH, Barritt BH (1984) Resistance of Fragaria chiloensis clones to the two-spotted spider-mite. HortSci 19:640–641Google Scholar
  190. Sharma G, Yadav A, Gara S (2014) Evaluation of different strawberry cultivars for yield and quality characters in Himachal Pradesh. Agric Sustain Dev 2(1):59–61Google Scholar
  191. Sharma RM, Yamdagni R (1999) Modern strawberry cultivation. Kalyani Publishers, New Delhi, IndiaGoogle Scholar
  192. Sharma RR, Sharma VP, Pandey SN et al (2002) Effect of foliar application of N, P and K on growth and yield of strawberry (Fragaria × ananassa). In: Proceedings of 2nd international agronomy congress on balancing food and environmental security—a continuing challenge, IARI, Delhi, India, pp 321–323Google Scholar
  193. Sharma RR, Sharma VP, Meen YR (2001) Strawberry cultivation: a profitable business. Intensive Agric 38(1):22–23Google Scholar
  194. Shaul EM (1986) Handbook of strawberry fruit set and development. CRC Press, Boca Raton FLGoogle Scholar
  195. Shulaev V, Korban SS, Sosinski B et al (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003CrossRefPubMedPubMedCentralGoogle Scholar
  196. Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116CrossRefPubMedGoogle Scholar
  197. Singh JP, Randhawa GS (1959) Effect of gibberellic acid and parachlorophenoxyacetic acid on growth and fruitfulness in strawberry. Indian J Hortic 16:14–17Google Scholar
  198. Sonkar P, Ram RB, Meena ML (2012) Effect of various mulch materials and spacing on growth, yield and quality of strawberry. Hortic Flora Res Spectr 1(4):323–327Google Scholar
  199. Sønsteby A, Heide OM (2006) Dormancy relations and flowering of the strawberry cultivars Korona and Elsanta as influenced by photoperiod and temperature. Sci Hortic 110(1):57–67Google Scholar
  200. Soohwan LIM et al (2017) The genetic diversity among strawberry breeding resources. Sci Agric 74(3):226–234CrossRefGoogle Scholar
  201. Sorvari S, Ulvinen S, Hietaranta T, Hiirsalmi H (1993) Preculture medium promotes direct shoot regeneration from micropropagated strawberry leaf disks. Hort Sci 28:55–57Google Scholar
  202. Staudt G (2003) Notes on Asiatic Fragaria species: III. Fragaria orientalis Losinsk and Fragaria mandshurica spec. nov. Bot Jahrbücher 124:397–419CrossRefGoogle Scholar
  203. Staudt G (2005) Notes on Asiatic Fragaria species: IV. Fragaria iinumae. Bot Jahrbücher 126:163–175CrossRefGoogle Scholar
  204. Staudt G (2006) Himalayan species of Fragaria (Rosaceae). Bot Jahrbücher 126:483–508CrossRefGoogle Scholar
  205. Staudt G, Dimeglio LM, Davis TM et al (2003) Fragaria × bifera Duch. Origin and taxonomy. Bot Jahrbücher 125:53–72CrossRefGoogle Scholar
  206. Staudt G, Dickore WB (2001) Notes on Asiatic Fragaria species: Fragaria pentaphylla Losinsk and Fragaria tibetica spec. nov. Bot Jahrbücher 123:341–354Google Scholar
  207. Staudt G, Olbrichr K (2008) Notes on Asiatic Fragaria species V: F. nipponica and F. iturupensis. Bot Jahrbücher 127:317–341CrossRefGoogle Scholar
  208. Stewart PJ, Folta KM (2010) A review of photoperiodic flowering research in strawberry (Fragaria spp.), critical reviews in survival and re-growth of cold stressed strawberry crowns. Adv Strawberry Prod Plant Sci 29:1–13Google Scholar
  209. Stuber CW (1992) Biochemical and molecular markers in plant breeding. Plant Breed Rev 9:37–61Google Scholar
  210. Taylor DR (2002) The physiology of flowering in strawberry. Acta Hortic 567:245–251CrossRefGoogle Scholar
  211. Tennessen JA, Govindarajulu R, Liston A et al (2013) Targeted sequence capture provides insight into genome structure and genetics of male sterility in a gynodioecious diploid strawberry, Fragaria vesca ssp. bracteata (Rosaceae). Genes Genomes Genet 3:1341–1351Google Scholar
  212. Tennessen JA, Govindarajulu R, Ashman TL, Liston A (2014) Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps. Genome Biol Evol 6:3295–3313CrossRefPubMedPubMedCentralGoogle Scholar
  213. Tenreira T, Lange MJP, Cécile Bres TL et al (2017) A specific gibberellins 20-oxidase dictates the flowering-runnering decision in diploid strawberry. Plant Cell 29:2168–2182. Scholar
  214. Trinklein D (2012) Strawberry: A brief history, division of plant sciences. University of Missouri.
  215. Ulrich D, Olbricht K (2016) A search for the ideal flavor of strawberry comparison of consumer acceptance and metabolite patterns in Fragaria × ananassa Duch. J Appl Bot Food Qual 89:223–234Google Scholar
  216. Urrutia M, Bonet J, Arús P, Monfort A (2015) A near-isogenic line (NIL) collection in diploid strawberry and its use in the genetic analysis of morphologic, phenotypic and nutritional characters. Theor Appl Genet 128:1261–1275CrossRefPubMedGoogle Scholar
  217. Urrutia M, Rambla JL, Alexiou KG et al (2017) Genetic analysis of the wild strawberry (Fragaria vesca) volatile composition. Plant Phys Biochem 121:99–117CrossRefGoogle Scholar
  218. Veilleux RE, Mills KP, Baxter AJ et al (2012) Transposon tagging in diploid strawberry. Plant Biotechnol J 10:985–994CrossRefPubMedGoogle Scholar
  219. Verheul MJ, Sonsteby A, Grimsta SO (2007) Influences of day and night temperatures on flowering of Fragaria ananassa Duch. cv. Koronaand Elsanta. Sci Hortic 112:200–206CrossRefGoogle Scholar
  220. Verma SK, Phogat KPS (1995) Effect of pollination by honeybees on fruit setting and yield of strawberry under Himalayan valley conditions. Prog Hortic 27(1–2):104–108Google Scholar
  221. Verma S, Zurn JZ, Salinas N et al (2017) Clarifying sub-genomic positions of QTLs for flowering habit and fruit quality in U.S. strawberry (Fragaria × ananassa) breeding populations using pedigree-based QTL analysis. Hortic Res 4:17062Google Scholar
  222. Waldo GF (1953) Sources of red-stele rot disease resistance in breeding strawberries in Oregon. Plant Dis Rep 37:232–342Google Scholar
  223. Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290CrossRefPubMedPubMedCentralGoogle Scholar
  224. Wang SY, Zheng W (2001) Effect of plant growth temperature on antioxidant capacity in strawberry. J Agric Food Chem 49:4977–4982CrossRefPubMedGoogle Scholar
  225. Weimin W, Mizhen Z, Zhuangei W et al (2009) The study of the irradiation effect on runner plant of strawberry with 60 Co-gamma ray. Proceeding VI Strawberry Symposium In: Lopes-Medina J (ed) Strawberry. Acta Hortic 842:597–600Google Scholar
  226. Wilk JA, Kramer AT, Ashley MV (2009) High variation in clonal vs. sexual reproduction in populations of the wild Strawberry, Fragaria virginiana (Rosaceae). Ann Bot 104:1413–1419CrossRefPubMedPubMedCentralGoogle Scholar
  227. Wing RA, Zhang H-B, Tanksley SD (1994) Map-based cloning in crop plants. Tomato as a model system: I. Genetic and physical mapping of jointless. Mol Gen Genet 242:681–688Google Scholar
  228. Xiao D, Sandhu A, Huang Y et al (2017) Theeffect of dietary factors on strawberry anthocyanins oral bioavailability. Food Funct 8:3970CrossRefPubMedGoogle Scholar
  229. Xilin H (1992) Effect of different cultivars and hormonal conditions on the strawberry anther culture in vitro. J Nanjing Agric Univ 15:21–28Google Scholar
  230. Yin Z, Malinowski R, Ziokowska A et al (2006) The DefH9- iaaM containing construct efficiently induces parthenocarpy in cucumber. Cell Mol Biol Lett 11:279–290CrossRefPubMedGoogle Scholar
  231. Yusnita Y, Widodo W, Sudarsono S (2005) In vitro selection of peanut somatic embryos on medium containing culture filtrates of Sclerotium rolfsii and plantlet regeneration. J Biosci 12(2):50–56Google Scholar
  232. Zakaria H, Hussein MG, Hadi A, Abdallah AN (2014) Improved regeneration and transformation protocols for three strawberry cultivars. GM Crops Food 5(1):27–35CrossRefPubMedGoogle Scholar
  233. Zebrowska JI, Hortynski J (2002) Plant regeneration from leaf explants in strawberry (Fragaria × ananassa Duch.). Acta Hortic 567:313–315Google Scholar
  234. Zhang Y, Tongle H, Lijing J, Keqiang C (2008) A bio-product as alternative to methyl bromide for replant disease control on strawberry. Front Agric China 2(1):72–76CrossRefGoogle Scholar
  235. Zimmerman RH (1981) Micropropagation of fruit plants. Acta Hortic 120:217–222CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ather-uz-Zaman
    • 1
    Email author
  • Jameel M. Al-Khayri
    • 2
  • Rafiul Islam
    • 3
  1. 1.Department of Agro-BiotechnologyGETCO Agro VisionDhakaBangladesh
  2. 2.Department of Agricultural BiotechnologyCollege of Agriculture and Food Sciences, King Faisal UniversityAl-HassaSaudi Arabia
  3. 3.Department of BotanyRajshahi UniversityRajshahiBangladesh

Personalised recommendations