Pear (Pyrus spp.) Breeding

  • Glacy Jaqueline da SilvaEmail author
  • Fabíola Villa
  • Fernanda Grimaldi
  • Pricila Santos da Silva
  • Juliana Fátima Welter


Pear is an important temperate-climate fruit, cultivated since the beginnings of civilization. Due to the delicacy of its flavor, it is consumed by many different people, as fresh fruit or as a component of hot and cold dishes, as well as various drinks and as part of recipes handed down for generations. Due to its versatility and flavor, it has become an important commodity for several countries in Europe, and in China and the United States. Due to its broad dispersion around the world, major genetic breeding programs are necessary to obtain the best characteristics of market such as flavor, texture, color and odor, besides resistance to the most diverse types of pathogens found in the culture, like black spot, Dysaphis pyri , fire blight and scab; as well as adaptation to the various climatic and edaphic conditions in which the plant is cultivated. Another topic that needs attention within pear culture is the rootstock system, which influences cultivation around the world, contributing to the production of quality fruits. This chapter aims to provide an overview of the main topics related to pear genetic improvement programs around the world, as well as to update the literature on recent and innovative research studies mainly involving molecular markers and QTLs.


Origin Domestication Rootstock QTLs Breeding Fruit quality Transgenic pear 


  1. Barbera G, Bellini E, Bolognesi G et al (2007) Il pêro. Bayer Crop Science S.r.l. Milano pp 270–275Google Scholar
  2. Bell RL (1991) Pears (Pyrus). Acta Hort 290:657–697CrossRefGoogle Scholar
  3. Bell RL (2014) Fruit quality of pear psylla-resistant parental germplasm. HortSci 49(2):138–140Google Scholar
  4. Bell RL, Janick J (1990) Quantitative genetic analysis of fruit quality in pear. J Am Soc Hort Sci 115:829–834Google Scholar
  5. Bell RL, Quamme HA, Layne REC, Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds) Fruit breeding, tree and tropical fruits. Wiley, London, pp 220–333Google Scholar
  6. Bellini E, Nin S (2002) Breeding for new traits in pear. Acta Hort 596:217–224CrossRefGoogle Scholar
  7. Bokszczanin K, Dondini L, Przybyla AA (2009) First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuriensis Maxim. J Appl Genet 50(2):99–104CrossRefPubMedGoogle Scholar
  8. Bouvier L, Bourcy M, Boulay M et al (2012) A new pear scab resistance gene Rvp1 from the European pear cultivar ‘Navara’ maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2. Tree Genet Genomes 8:53–60CrossRefGoogle Scholar
  9. Calenge F, Drouet D, Denance C et al (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135CrossRefPubMedGoogle Scholar
  10. Camellato D (2003) Propagação. In: Nakasu BH, Quezada AC, Herter FG (eds) Pêra produção. Embrapa Clima Temperado, Brasília, pp 37–45Google Scholar
  11. Chen H, Song Y, Li LT et al (2015) Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Mol Biol Rep 33:316–325CrossRefGoogle Scholar
  12. Cho KH, Shin IS, Kim KT et al (2009) Development of AFLP and CAPS markers linked to the scab resistance gene, Rvn2, in an inter-specific hybrid pear (Pyrus spp.). J Hort Sci Biotech 84(6):619–624CrossRefGoogle Scholar
  13. Clive J (2015) Global status of commercialized Biotech/GM Crops: 2015. ISAAA Brief. No. 51. ISAAA, Ithaca, New YorkGoogle Scholar
  14. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concept. Euphytica 142:169–196CrossRefGoogle Scholar
  15. Colombo R (2008) Portinnesti del PERO, un modello vincente Available at:
  16. Costa F, Van de Weg WE, Stella S et al (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expanse in gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4(3):575–586CrossRefGoogle Scholar
  17. Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornamental pear tree Pyrus calleryana. Biol Invas 11(5):1107–1119CrossRefGoogle Scholar
  18. Dondini L, Pierantoni L, Gaiotti F et al (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418CrossRefGoogle Scholar
  19. Ercisli S, Esitken A, Orhan E, Ozdemir O (2006) Rootstocks used for temperate fruit trees in Turkey: an overview. Sodininkyste ir Darzininkyste 25:27–33Google Scholar
  20. Evans KM, Govan CL, Fernandez-Fernandez F (2008) A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers. Genome 51:1026–1031CrossRefPubMedGoogle Scholar
  21. Fachinello JC, Pasa MS (2010) Porta enxertos na cultura da pereira. III Reunião técnica da cultura da pereira. Lages, SC, pp 70–77Google Scholar
  22. FAO (2013) Food and Agriculture Organization of the United Nations. FAOSTAT: statistics database. Available at:
  23. Faoro ID, Nakasu BH (2001) Perspectiva da cultura da pereira Japonesa no Brasil. In: Seminário sobre fruticultura de clima temperado. Florianópolis: Epagri 53–61Google Scholar
  24. Faoro ID, Orth AI (2010) A cultura da pereira no Brasil. Rev Bras Frutic 32(1):1–342CrossRefGoogle Scholar
  25. Faoro ID, Passa MS, Argentina LC et al (2017) A pereira cv. Williams ou Bartlett. RAC 30(2):47–50Google Scholar
  26. Feldberg NP, Barbosa W, Mayer NA, Santos FM (2010) Propagação vegetativa de porta-enxertos de pereira por estacas semi-lenhosas. Rev Ceres 57(6):810–816CrossRefGoogle Scholar
  27. Fernández-Fernández F, Harvey NG, James CM (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol 6:1039–1041. Scholar
  28. Fideguelli C, Loreti F (2009) Monografia dei portinnesti dei fruttiferi. Ministero delle Politiche Agricole Alimentaari e Forestali, Rome, ItalyGoogle Scholar
  29. Franck C, Baetens M, Lammertyn J et al (2003) Ascorbic acid concentration in Cv. conference pears during fruit development and postharvest storage. J Agric Food Chem 51(16):4757–4763CrossRefPubMedGoogle Scholar
  30. Freiman A, Shlizerman L, Golobovitch S et al (2012) Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1- and PcTFL1-2. Planta 235(6):1239–1251. Scholar
  31. Gao M, Matsuda N, Murayama H et al (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. “La France”) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173(1):32–42CrossRefGoogle Scholar
  32. Gonai T, Terakami S, Nishitani C et al (2009) The validity of marker-assisted selection using DNA markers linked to a pear scab resistance gene (Vnk) in two populations. J Japan Soc Hort Sci 78(1):49–54CrossRefGoogle Scholar
  33. Grab S, Craparo A (2011) Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973–2009. Agric For Meteorol 151:406–413. Scholar
  34. Grimaldi F (2014) Seleção de genótipos de Pyrus communis L. com potencial para portaenxerto e desenvolvimento de protocolo de micropropagação 128 f. Tesis - Universidade do Estado de Santa Catarina, LagesGoogle Scholar
  35. Grimaldi F, Gonçalves MJ, Pelizza TR (2012) Micropropagação. In: Rufato L, Kretzschmar AA, Bogo AA (eds) Cultura da pereira, 1st edn. Dioesc, Florianópolis, pp 230–247Google Scholar
  36. Hancock JF (2008) Temperate fruit crop breeding: germplasm to genomics. Springer, BerlinCrossRefGoogle Scholar
  37. Hatfield J, Takle G, Grotjahn R et al (2014) Agriculture. In: Melillo JM, Richmond T, Yohe GW (eds) Climate change impacts in the United States. U.S. Government Printing Office, pp 150–174.
  38. Houston L, Capalbo S, Seavert C et al (2017) Specialty fruit production in the Pacific Northwest: adaptation strategies for a changing climate. Clim Change 4:1–13. Scholar
  39. Huang G, Li T, Li X et al (2014) Comparative transcriptome analysis of climacteric fruit of Chinese pear (Pyrus ussuriensis). Reveals new insights into fruit ripening. PLoS ONE 9(9):e107562CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Plant genetics and genomics: crops and models. Springer, New York, pp 1–17Google Scholar
  41. Iwata H, Minamikawa MF, Kajiya-Kanegae H et al (2016) Genomics-assisted breeding in fruit trees. Breed Sci 66(1):100–115. Scholar
  42. Jackson JE (2003) Biology of apples and pears. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Jiang S, Zheng X, Yu P et al (2016) Primitive genepools of Asian pears and their complex hybrid origins inferred from fluorescent sequence-specific amplification polymorphism (SSAP) markers based on LTR retrotransposons. PLoS ONE 11(2):e0149192CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jiang Z, Tang F (2009) Assessment of genetic diversity of Chinese sand pear landraces (Pyrus pyrifolia Nakai) using simple sequence repeat markers. Hort Sci 44(3):619–626Google Scholar
  45. Katayama H, Ohe M, Sugawara E (2013) Diversity of odor-active compounds from local cultivars and wild accessions of Iwateyamanashi (Pyrus ussuriensis var. aromatica) revealed by aroma extract dilution analysis (AEDA). Breed Sci 63(1):86–95CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kaur K, Dhillon WS (2015) Influence of maturity and storage period on physical and biochemical characteristics of pear during post cold storage at ambient conditions. Adv J Food Sci Tech 52(8):5352–5356CrossRefGoogle Scholar
  47. Khorshidi S, Davarynejad G, Samiei L, Moghaddam M (2017) Study of genetic diversity of pear genotypes and cultivars (Pyrus communis L.) using inter-simple sequence repeat markers (ISSR).
  48. Kim CS, Lee GP, Han DH et al (2000) Classification and identification of Pyrus pyrifolia using RAPD. J Kor Soc Hort Sci 41:119–124Google Scholar
  49. Knäbel M, Friend AP, Palmer JW et al (2015) Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC Plant Biol 15:230. Scholar
  50. Knäbel M, Friend AP, Palmer JW et al (2017) Quantitative trait loci controlling vegetative propagation traits mapped in European pear (Pyrus communis L.). Tree Genet Genomes 13:55. Scholar
  51. Kumar S, Kirk C, Deng C et al (2017) Genotyping-by-sequencing of pear (Pyrus spp.) accessions unravels novel patterns of genetic diversity and selection footprints. Hort Res
  52. Leblay CC, Chevreau E, Raboin LM (1991) Adventitious shoot regeneration from in vitro leaves of several pear cultivars (Pyrus communis L.). Plant Cell, Tissue Organ Cult 25:99–105Google Scholar
  53. Le Roux PMF, Christen D, Duffy B et al (2012) Redefinition of the map position and validation of a major quantitative trait locus for fire blight resistance of the pear cultivar “Harrow Sweet” (Pyrus communis L.). Plant Breed 131:656–664. Scholar
  54. Leite GB (2000) Propagação da pereira. In: Epagri (ed) Curso sobre a cultura da pereira, 2nd edn. Epagri, Caçador, pp 60–88Google Scholar
  55. Leite GB, Denardi F (1992) Porta-enxertos para pereira: adaptação e algumas condições ambientais. Agropec Catar 5(2):47–49Google Scholar
  56. Li G, Jia H, Wu R et al (2012) Characterization of aromatic volatile constituents in 11 Asian pear cultivars belonging to different species. Afr J Agric Res 7(34):4761–4770CrossRefGoogle Scholar
  57. Li G, Qi J, Zhang Y et al (2011) Construction and transformation for the antisense expression vector of the polyphenol oxidase gene in “Yali” pear. Front Agric China 5(1):40–44CrossRefGoogle Scholar
  58. Lobell DB, Burke MB, Tebaldi C et al (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610CrossRefGoogle Scholar
  59. Loreti F (1994) Attuali conoscenze sui principali portinnesti degli alberi da frutto - Il pero. Rivista Frutticolt 9:21–26Google Scholar
  60. Machado BD, Rufato ADR, Filho JLM (2012) Porta enxertos. In: Rufato L, Kretzschmar AA, Bogo A (eds) A cultura da Pereira, 1st edn. Dioesc, Florianópolis, pp 172–190Google Scholar
  61. Madeira CID (2012) Estudo comparativo do comportamento agronómico de cinco clones de pereira (Pyrus communis L.) cv. Rocha em três porta-enxertos. Thesis Universidade Técnica de Lisboa, LisbonGoogle Scholar
  62. Makkumrai W, Anthon GE, Sivertsen H et al (2014) Effect of ethylene and temperature conditioning on sensory attributes and chemical composition of ‘Bartlett’ pears. Postharvest Biol Technol 97:44–61CrossRefGoogle Scholar
  63. Marino P, Schicchi R, Barone E et al (2013) First results on the phenotypic analysis of wild and cultivated species of Pyrus in Sicily. Flora Mediter 23:237–243Google Scholar
  64. Masseron A, Trillot M (1991) Le poirier. Ctifl, FranceGoogle Scholar
  65. Matsuda N, Ikeda K, Kurosaka M et al (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Japan Soc Hort Sci 78:410–416Google Scholar
  66. Mitcham EJ, Elkins RB (2007) Pear production and handling manual. University of California, Division of Agriculture and Natural Resources, Davis, Publication 3483Google Scholar
  67. Montanari S, Perchepied L, Renault D et al (2016) A QTL detected in an interspecific pear population confers stable fire blight resistance across different environments and genetic backgrounds. Mol Breed 36:47. Scholar
  68. Monte-Corvo L, Goulão L, Oliveira C (2001) ISSR analysis of cultivars of pear and suitability of molecular markers for clone discrimination. J Am Soc Hort Sci 126(5):517–522Google Scholar
  69. Morgan J (2015) The book of pears, the definitive history and guide to over 500 varieties. Vermont, Chelsea GreenGoogle Scholar
  70. Musacchi S (2008) I portinnesti per La moderna pericoltura. In: II Reunião técnica da cultura da pereira, Lages, pp 7–12Google Scholar
  71. Nishio S, Hayashi T, Yamamoto T et al (2016a) Validation of molecular markers associated with fruit ripening day of Japanese pear (Pyrus pyrifolia Nakai) using variance components. Sci Hort 199:9–14CrossRefGoogle Scholar
  72. Nishio S, Takada N, Saito T et al (2016) Estimation of loss of genetic diversity in modern Japanese cultivars by comparison of diverse genetic resources in Asian pear (Pyrus spp.). BMC Gen.
  73. NOAA (2017) State of the climate: global analysis for annual 2016, National Centers for Environmental. Available via Accessed 10 Nov 2017
  74. Paganová V (2003) Taxonomic reliability of leaf and fruit morphological characteristics of the Pyrus L. taxa in Slovakia. Hort Sci 30(3):98–107Google Scholar
  75. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phonological response to global warming. Global Change Biol 13:1860–1872. Scholar
  76. Parry ML (ed) (2000) Assessment of potential effects and adaptations for climate change in Europe. University of East Anglia, NorwichGoogle Scholar
  77. Pasa MS, Fachinello JC, Rosa Júnior HF et al (2015) Performance of ‘Rocha’ and ‘Santa Maria’ pears as affected by planting density. Pesq Agropec Bras 50(2):126–131CrossRefGoogle Scholar
  78. Perchepied L, Leforestier D, Ravon E et al (2015) Genetic mapping and pyramiding of two new pear scab resistance QTLs. Mol Breed 35:197. Scholar
  79. Pierantoni L, Dondini L, Cho KH et al (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3:311–317. Scholar
  80. Pina A, Errea P (2009) Morphological and histochemical features of compatible and incompatible stem unions. Acta Hort 814:453–456CrossRefGoogle Scholar
  81. Pio R, Chagas EA, Barbosa W et al (2008) Interspecific and intergeneric pear, apple and quince grafting using Pyrus calleryana as rootstock. Acta Hort 800:713–717CrossRefGoogle Scholar
  82. Potter D, Still SM, Grebenc T et al (2007) Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Plant Syst Evol 266:105–118CrossRefGoogle Scholar
  83. Primack RB, Higuchi H, Miller-Rushing AJ (2009) The impact of climate change on cherry trees and other species in Japan. Biol Conserv 142:1943–1949CrossRefGoogle Scholar
  84. Plucknett DL, Smith NJH, Williams N, Anishetty M (1983) Crop germplasm conservation and developing countries. Science 220(4593):163–169CrossRefPubMedGoogle Scholar
  85. Qin GH, Qi XX, Qi YJ et al (2017) Identification and expression patterns of alcohol dehydrogenase genes involving in ester volatile biosynthesis in pear fruit. J Integr Agric 16(8):1742–1750Google Scholar
  86. Qin G, Tao S, Zhang H et al (2014) Evolution of the aroma volatiles of pear fruits supplemented with fatty acid metabolic precursors. Molecul 19(12):20183–20196CrossRefGoogle Scholar
  87. Quartieri M, Baldi E, Toselli M et al (2013) Effetto del portinnesto e del cloruro di calcio nel controllo della maculatura bruna del pero. In: Atti del convegno Ager Innovapero. Innovazioni di processo e di prodotto per una pericoltura di qualità, Università di Ferrara, Ferrara, 18 Oct 2013Google Scholar
  88. Reiland H, Slavin J (2015) Systematic review of pears and health. Nutr Today 50(6):301–305CrossRefPubMedPubMedCentralGoogle Scholar
  89. Reynoird JP, Mourgues F, Norelli J et al (1999) First evidence for improved resistance for fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149(1):23–31CrossRefGoogle Scholar
  90. Rufato L, de Rossi A, Giacobbo CL, Fachinello JC (2004) Vegetative propagation of seven quince cultivars for utilization as pear rootstocks in Brazil. Acta Hort 658:667–671CrossRefGoogle Scholar
  91. Saito T (2016) Advances in Japanese pear breeding in Japan. Breed Sci 66(1):46–59CrossRefPubMedPubMedCentralGoogle Scholar
  92. Sawamura Y, Saito T, Takada N et al (2004) Identification of parentage of Japanese pear ‘Housui’. J Japan Soc Hort Sci 73:511–518CrossRefGoogle Scholar
  93. Schrader L, Sun J, Felicetti D et al (2003) Stress-induced disorders: effects on apple fruit quality. In: Proceedings of the 99th Annual Meeting of Washington, Wenatchee, 2–3 Dec 2003Google Scholar
  94. Schreiber A (2016) State of the Washington blueberry industry. In: Washington Small Fruit Conference, Washington, 29–30 Nov 2016Google Scholar
  95. Sha S, Li J, Wu J, Zhang S (2011) Characteristics of organic acids in the fruit of different pear species. Afr J Agric Res 6(10):2403–2410Google Scholar
  96. Sharma RM, Pandey SN, Pandey V (2010) Breeding and Improvement. In: The pear: production, postharvest management and protection. IBDC Publishers, IndiaGoogle Scholar
  97. Silva GJ, Souza TM, Barbieri L, Oliveira AC (2014) Origin, domestication, and dispersing of pear (Pyrus spp.). Adv Agric.
  98. Soares J, Silva A, Alexandre J (2001) Porta-enxertos. In: Soares J (ed) O livro da pera rocha: Intensificação cultural e regulação da produção, 1st edn. ANP, Cadaval, pp 101–114Google Scholar
  99. Sousa R, Rodrigues AC, Dias PJF (2001) Estudo comparativo de porta-enxertos de pereira ‘Rocha’ com a cultivar ‘Rocha’. ENFVN, AlcobaçaGoogle Scholar
  100. Sun W, Zhang Y, Le Wenquan, Zhang Hai’e (2009) Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L.) Front Agric China 3:67Google Scholar
  101. Suzuki Y, Maeshima M, Yamaki S (1999) Molecular cloning of vacuolar H + -pyrophosphatase and its expression during the development of pear fruit. Plant Cell Physiol 40(8):900–904CrossRefPubMedGoogle Scholar
  102. Tateishi A, Mori H, Watari J et al (2005) Isolation, characterization, and cloning of α-l-arabinofuranosidase expressed during fruit ripening of Japanese pear. Plant Physiol 138(3):1653–1660CrossRefPubMedPubMedCentralGoogle Scholar
  103. Terakami S, Adachi Y, Iketani H et al (2007) Genetic mapping of genes for susceptibility to black spot disease in Japanese pears. Genome 50:735–741CrossRefPubMedGoogle Scholar
  104. Terakami S, Moriya S, Adachi Y et al (2016) Fine mapping of the gene for susceptibility to black spot disease in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 66:271–280. Scholar
  105. Terakami S, Shoda M, Adachi Y et al (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752CrossRefPubMedGoogle Scholar
  106. USDA (2014) NCGR-Corvallis Pyrus germplasm. Accessed 13 Nov 2017
  107. Vitasse Y, Delzon S, Dufrêne E et al (2009) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric Forest Meteorol 149:735–744CrossRefGoogle Scholar
  108. Volk GM, Richards CM, Henk AD, Reilley AA (2006) Diversity of wild Pyrus communis based on microsatellite analyses. J Am Soc Hort Sci 131(3):408–417Google Scholar
  109. Wang L, Lib X, Wang L et al (2017) Construction of a high-density genetic linkage map in pear (Pyrus communis × Pyrus pyrifolia Nakai) using SSRs and SNPs developed by SLAF-seq. Sci Hort 218:198–204CrossRefGoogle Scholar
  110. Wang Y, Liu Y, Zhang Y, Xu Z (2011) Quality evaluation of mixed brewed perries based on PCA and sensory evaluation. Front Agri China 5(4):529–533CrossRefGoogle Scholar
  111. Webster AD (1998) A brief review of pear rootstock development. Acta Hort 475:135–142CrossRefGoogle Scholar
  112. Werteim SJ (2002) Rootstocks for European pear: a review. Acta Hort 569(1):299–309CrossRefGoogle Scholar
  113. Wertheim SJ, Vercammen J (2000) A multi-site pear-interstem trial in the Netherlands and Belgium. J Amer Pomol Soc 54:199–207Google Scholar
  114. Won K, Bastiaanse H, Kim YK et al (2014) Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family. Mol Breed 34:2179–2189. Scholar
  115. Wu J, Wang Z, Shi Z (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408CrossRefPubMedPubMedCentralGoogle Scholar
  116. Wu J, Li LT, Li M et al (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot 65(20):5771–5781CrossRefPubMedPubMedCentralGoogle Scholar
  117. Wolko L, Antkowiak W, Lenartowicz E, Bocianowski J (2010) Genetic diversity of European pear cultivars (Pyrus communis L.) and wild pear (Pyrus pyraster (L.) Burgsd.) inferred from microsatellite markers analysis. Genet Resour Crop Evol 57:801–806CrossRefGoogle Scholar
  118. Yamada K, Suzue Y, Hatano S et al (2006) Changes in the activity and gene expression of sorbitol and sucrose elated enzymes associated with development of ‘La France’ pear fruit. J Japan Soc Hort Sci 75(1):38–44CrossRefGoogle Scholar
  119. Yamamoto T, Kimura T, Shoda M et al (2002) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Res 2:14–16Google Scholar
  120. Yamamoto T, Kimura T, Hayashi T, Ban B (2006) DNA profiling of fresh and processed fruits in pear. Breed Sci 56(2):1–16CrossRefGoogle Scholar
  121. Yamamoto T, Kimura T, Terakami S et al (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329CrossRefGoogle Scholar
  122. Yamamoto T, Terakami S, Takada N et al (2014) Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 64:351–361CrossRefPubMedPubMedCentralGoogle Scholar
  123. Yang Y, Yao G, Yue W et al (2015) Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). Front Plant Sci
  124. Yao G, Minq M, Allan AC et al (2017) Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant J. Scholar
  125. Yim SH, Nam SH (2016) Physiochemical, nutritional and functional characterization of 10 different pear cultivars (Pyrus spp.). J Appl Bot Food Qual 89:73–81Google Scholar
  126. Zhang Y, Yang J, Showalter AM (2011a) AtAGP18, a lysine-rich arabinogalactan protein in Arabidopsis thaliana, functions in plant growth and development as a putative co-receptor for signal transduction. Plant Signal Behav 6(6):855–857CrossRefPubMedPubMedCentralGoogle Scholar
  127. Zhang D, Dong W, Zhang J, Wang N (2010) Optimization of perry fermentation technology conditions. Transact Chinese Soc Agric 41(10):159–164Google Scholar
  128. Zhang RP, Wu J, Li X et al (2013) An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol Biol Rep 31:678–687CrossRefGoogle Scholar
  129. Zhang RP, Wu J, Li X et al (2011b) Construction of AFLP genetic linkage map and analysis of QTLs relate to fruit traits in pear. Acta Hort 10(11):1–13Google Scholar
  130. Zierer B, Schieberle P, Granvogl M (2016) Aroma active compounds in Bartlett pears and their changes during the manufacturing process of Bartlett pear brandy. J Agri Food Chem 64(50):9515–9522CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Glacy Jaqueline da Silva
    • 1
    Email author
  • Fabíola Villa
    • 2
  • Fernanda Grimaldi
    • 3
  • Pricila Santos da Silva
    • 3
  • Juliana Fátima Welter
    • 3
  1. 1.Molecular Biology DepartmentParanaense University, UNIPARUmuaramaBrazil
  2. 2.Horticulture DepartmentWestern Paraná State University, UNIOESTEMarechal C. RondonBrazil
  3. 3.Agricultural Sciences Center of LagesUniversity of Santa Catarina StateFlorianópolisBrazil

Personalised recommendations