Skip to main content

Strategies for Olive (Olea europaea L.) Breeding: Cultivated Genetic Resources and Crossbreeding

  • Chapter
  • First Online:

Abstract

Olive cultivars represent an invaluable heritage of genetic variability selected over more than 5500 years of cultivation . This high diversity of local cultivars is a common feature in traditional olive -producing countries. Most cultivars are old and continue to be cultivated around areas where they have likely been selected. Crossbreeding in olives was only initiated in the second half of the twentieth century and currently represents the most promising strategy to provide farmers with new cultivars that are well adapted to the new high density olive plantations spreading in traditional and new olive -growing countries. This chapter focuses on cultivated genetic resources and crossbreeding strategies in olive . Exploration, cataloguing and authentication for the conservation and sustainability of true-to-type cultivars by morphological and DNA markers in the Network of Germplasm Banks promoted by the International Olive Council, is the most extensive and worldwide initiative to date. The strategies, methodologies and advances in crossbreeding programs worldwide are reviewed. Shortening the juvenile period , early selection and other strategies for the evaluation of valuable agronomical traits are integrated into the framework of alternative protocols that also provide information regarding the variability and heritability of these traits. In addition, the possibilities provided by new genomics tools to shorten the protracted crossbreeding process are also presented. Finally, new developments on in vitro culture and genetic transformation as well as the feasibility of using these tools in breeding programs are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alagna F, D’Agostino N, Torchia L et al (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10:399. https://doi.org/10.1186/1471-2164-10-399

    Article  CAS  Google Scholar 

  • Alcántara E, Cordeiro AM, Barranco D (2003) Selection of olive varieties for tolerance to iron chlorosis. J Plant Phys 160(12):1467–1472

    Article  Google Scholar 

  • Arias-Calderón R, Rodríguez-Jurado D, Bejarano-Alcázar J et al (2015a) Evaluation of verticillium wilt resistance in selections from olive breeding crosses. Euphy 206(3):619–629. https://doi.org/10.1007/s10681-015-1463-7

    Article  Google Scholar 

  • Arias-Calderón R, Rodríguez-Jurado D, León L et al (2015b) Pre-breeding for resistance to verticillium wilt in olive: fishing in the wild relative gene pool. Crop Prot 75:25–33. https://doi.org/10.1016/j.cropro.2015.05.006

    Article  Google Scholar 

  • Arias-Calderon R, Rouiss H, Rodriguez-Jurado D et al (2014) Variability and heritability of fruit characters in olive progenies from open-pollination. Sci Hort 169:94–98

    Article  Google Scholar 

  • Atienza SG, De la Rosa R, Domínguez-García MC et al (2013) Use of DArT markers as a means of better management of the diversity of olive cultivars. Food Res Int 54:2045–2053

    Article  CAS  Google Scholar 

  • Atienza SG, de la Rosa R, León L et al (2014) Identification of QTL for agronomic traits of importance for olive breeding. Mol Breed 34:725–737. https://doi.org/10.1007/s11032-014-0070-y

    Article  Google Scholar 

  • Avidan B, Meni Y, Lavee S (2012) Inheritance potential of fruit quality traits within olive (Olea europaea L.) cultivars. Acta Hort 949:105–111

    Article  Google Scholar 

  • Azzarello E, Mugnai S, Pandolfi C et al (2009) Comparing image (fractal analysis) and electrochemical (impedance spectroscopy and electrolyte leakage) techniques for the assessment of the freezing tolerance in olive. Trees-Struct Funct 23(1):159–167. https://doi.org/10.1007/s00468-008-0264-1

    Article  Google Scholar 

  • Baccouri B, Ben Temime S, Campeol E et al (2007) Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils from five new cultivars. Food Chem 102:850–856

    Article  CAS  Google Scholar 

  • Bacelar EA, Moutinho-Pereira JM, Gonçalves BC et al (2009) Physiological responses of different olive genotypes to drought conditions. Acta Phys Plant 31(3):611–621. https://doi.org/10.1007/s11738-009-0272-9

    Article  CAS  Google Scholar 

  • Badenes ML, Byrne DH (eds) (2012) Fruit breeding. Handbook of plant breeding, vol 8. Springer, Dordrecht

    Google Scholar 

  • Bairu MW, Aremu AO, van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Barranco D, Cimato A, Fiorino P et al (2000) World catalogue of olive varieties. International Olive Council, Madrid

    Google Scholar 

  • Barranco D, Fernández-Escobar R, Rallo L (eds) (2010) Olive growing, 1st English edition of the 5th edition of El cultivo del olivo. Co-edition. Junta de Andalucia-Mundi-Prensa-RIRDC, Australia

    Google Scholar 

  • Barranco D, Fernández-Escobar R, Rallo L (eds) (2017) El cultivo del olivo, 7th edn. Mundi- Prensa, Madrid

    Google Scholar 

  • Barranco D, Rallo L (1984) Las variedades de olivo cultivadas en Andalucía. Ministerio de Agricultura-Junta de Andalucía, Madrid

    Google Scholar 

  • Barranco D, Rallo L, Trujillo I (2005a) Elaiografía hispánica. In: Rallo L, Barranco D, Caballero JM et al (eds) Variedades de olivo en España. Junta de Andalucía, MAPA, Ediciones Mundi-Prensa, Madrid, pp 80–231

    Google Scholar 

  • Barranco D, Ruiz N, Gómez-Del Campo M (2005b) Frost tolerance of eight olive cultivars. HortSci 40(3):558–560

    Google Scholar 

  • Bartolini G (2008) Olive germplasm (Olea europaea L.): cultivars, synonyms, cultivation area, collections, descriptors. http://www.oleadb.it/

  • Bartolini G, Prevost G, Messeri C et al (1998) Olive germplasm: cultivars and world-wide collections. FAO, Rome

    Google Scholar 

  • Bartolozzi F, Fontanazza G (1999) Assessment of frost tolerance in olive (Olea europaea L.). Sci Hort 81(3):309–319. https://doi.org/10.1016/S0304-4238(99)00019-9

    Article  Google Scholar 

  • Bazakos C, Manioudaki ME, Therios I et al (2012) Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress. PLoS ONE 7:e42931. https://doi.org/10.1371/journal.pone.0042931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bazakos C, Manioudaki ME, Sarropoulou E et al (2015) 454 pyrosequencing of olive (Olea europaea L.) transcriptome in response to salinity. PLoS ONE 10:e0143000. https://doi.org/10.1371/journal.pone.0143000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belaj A, Trujillo I, de la Rosa R et al (2001) Polymorphism and discriminating capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hort Sci 126:64–71

    CAS  Google Scholar 

  • Belaj A, Satovic Z, Rallo L, Trujillo I (2002) Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet 105:638–644

    Article  PubMed  CAS  Google Scholar 

  • Belaj A, Caballero JM, Barranco D et al (2003a) Genetic characterization and identification of new accessions from Syria in an olive germplasm bank by means of RAPD markers. Euphy 134:261–268

    Article  CAS  Google Scholar 

  • Belaj A, Satovic Z, Ismaili H et al (2003b) RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphy 130:387–395

    Article  CAS  Google Scholar 

  • Belaj A, Rallo L, Trujillo I et al (2004a) Using RAPD and AFLP markers to distinguish individuals obtained by clonal selection of ‘Arbequina’ and ‘Manzamila de Sevilla’ olive. HortSci 39(7):1566–1570

    CAS  Google Scholar 

  • Belaj A, Satovic Z, Cipriani G et al (2003c) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744

    Google Scholar 

  • Belaj A, Satovic Z, Rallo L (2004b) Optimal use of RAPD markers for identifying varieties in olive (Olea europaea L.) germplasm collections. J Am Soc Hort Sci 129(2):266–270

    CAS  Google Scholar 

  • Belaj A, Trujillo I, Barranco D et al (2004c) Characterization and identification of Spanish olive germplasm by means of RAPD markers. HortSci 39(2):346–350

    CAS  Google Scholar 

  • Belaj A, Muñoz-Diez C, Baldoni L et al (2007) Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Ann Bot 100:449–458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belaj A, Muñoz-Diez C, Baldoni L et al (2010) Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Sci Hort 124:323–330

    Article  CAS  Google Scholar 

  • Belaj A, León L, Satovic Z et al (2011) Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agromorphological traits and SSR markers. Sci Hort 129:561–569

    Article  Google Scholar 

  • Belaj A, Dominguez-Garcia MD, Atienza SG et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genom 8:365–378

    Article  Google Scholar 

  • Belaj A, Gurbuz VM, Sikaoui H et al (2016) Olive genetic resources. In: Rugini E, Baldoni L, Mulea R, Sabastini L (eds) The olive tree genome, compendium of plant genomes. Springer International Publishing AG, New York, pp 26–54. https://doi.org/10.1007/978-3-319-48887-5_3

    Chapter  Google Scholar 

  • Bellincontro A, Caruso G, Mencarelli F, Gucci R (2013) Oil accumulation in intact olive fruits measured by near infrared spectroscopy-acousto-optically tunable filter. J Sci Food Agr 93(6):1259–1265. https://doi.org/10.1002/jsfa.5899

    Article  CAS  Google Scholar 

  • Bellini E (1992) Behaviour of some genetic characters in olive seedlings obtained by cross-breeding. Acta Hort 317:197–208

    Article  Google Scholar 

  • Bellini E (1993) Variabilità genetica ed ereditarietà di alcuni caratteri in semenzali d’incrocio di olivo. Olivae 49:21–34

    Google Scholar 

  • Bellini E, Giordani E, Parlati MV (2004) Arno, Tevere e Basento: nuove cultivar di olivo ottenute per incrocio. Olivae 102:42–46

    Google Scholar 

  • Bellini E, Giordani E, Parlati MV et al (2002a) Olive genetic improvement: thirty years of research. Acta Hort 586:105–108

    Article  Google Scholar 

  • Bellini E, Giordani E, Parlati MV et al (2002b) Olive genetic improvement: variability within the progeny “Picholine x Grossane”. Acta Hort 586:183–186

    Article  Google Scholar 

  • Bellini E, Giordani E, Ranalli A et al (2002c) Analytical characteristics of the virgin olive oils from three new genotypes obtained at Florence by cross-breeding. Acta Hort 586:125–128

    Article  CAS  Google Scholar 

  • Ben-Ari G, Biton I, Avidan B, Lavee S (2014) The diversity in performance of commercial olive clones selected from the autochthonous cv. Souri population for intensive irrigated cultivation. HortSci 49:425–429

    Google Scholar 

  • Ben Sadok I, Celton JM, Essalouh L et al (2013) QTL mapping of flowering and fruiting traits in olive. PLoS ONE 8:e62831

    Article  PubMed  CAS  Google Scholar 

  • Ben Sadok I, Martinez S, Moutier N et al (2015) Plasticity in vegetative growth over contrasted growing sites of an f1 olive tree progeny during its juvenile phase PLoS One 10(6). https://doi.org/10.1371/journal.pone.0127539

  • Benelli C, Fabri A, Grassi S et al (2001) Histology of somatic embryogenesis in mature tissues of olive (Olea europaea L.). J Hort Sci Biotech 76(1):112–119

    Article  Google Scholar 

  • Besnard G, Anthelme F, Baali-Cherif D (2012) The Laperrine’s olive tree (Oleaceae): a wild genetic resource of the cultivated olive and a model-species for studying the biogeography of the Saharan Mountains. Acta Bot Gallica 159(3):319–328. https://doi.org/10.1080/12538078.2012.724281

    Article  Google Scholar 

  • Besnard G, Khadari B, Navascués M et al (2013) The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B-Biol Sci 280:20122833. https://doi.org/10.1098/rspb.2012.2833

    Article  CAS  Google Scholar 

  • Bogani P, Cavalieri D, Petruccelli R et al (1994) Identification of olive tree cultivars by using random amplified polymorphic DNA. Acta Hort 356:98–101

    Article  Google Scholar 

  • Boulouha B (1986) Sélection clonale de la Picholine Marrocaine. Olea 17:67–70

    Google Scholar 

  • Bourgin JP, Nitsch JP (1967) Production of haploid Nicotiana from excised stamens. Ann Phys Vég 9:377–382

    Google Scholar 

  • Bradai F, Pliego-Alfaro F, Sanchez-Romero C (2016a) Long-term somatic embryogenesis in olive (Olea europaea L.): influence on regeneration capability and quality of regenerated plants. Sci Hort 199:23–31

    Article  Google Scholar 

  • Bradai F, Pliego-Alfaro F, Sanchez-Romero C (2016b) Somaclonal variation in olive (Olea europaea L.) plants regenerated via somatic embryogenesis: influence of genotype and culture age on phenotypic stability. Sci Hort 213:208–215

    Article  Google Scholar 

  • Bradai F, Sánchez-Romero C (2017) Efecto de la crioconsevación y de un precultivo con alta concentracion de sacarosa sobre la embriogénesis somática de olivo. Madrid, Libro de Resúmenes, XII Reunión de la SECIVTV, p 98

    Google Scholar 

  • Brhadda N, Abousalim A, Walali LDE (2003a) Effets du milieu de culture et de la lumiére sur l’embriogenése somatique de l’olivier (Olea europaea L.) cv. Picholine Marocaine. Fruits 58:167–174

    Article  Google Scholar 

  • Brhadda N, Abousalim A, Walali LDE et al (2003b) Effets du milieu de culture sur le microbouturage de l’olivier (Olea europaea L.) cv. Picholine Marocaine. Biotechnol Agron Soc Envir 7(3–4):177–182

    Google Scholar 

  • Briccoli-Bati C, Godino G, Monardo D et al (2006) Influence of propagation techniques on growth and yield of olive trees cultivars ‘Carolea’ and ‘Nocellara Etnea’. Sci Hort 109:173–182

    Article  Google Scholar 

  • Caballero JM, Del Río C, Barranco D et al (2006) The olive world germplasm bank of Cordoba, Spain. Olea 25:14–19

    Google Scholar 

  • Cabello Moreno B, Barceló Muñoz A, Padilla IMG (2013) Petratamientos y encapsulación en alginato como método de conservación in vitro de olivo. X Reunión de la SECIVTV, Zaragoza, Libro de Resúmenes, p 55

    Google Scholar 

  • Caceres ME, Cecarelli M, Pupilli F et al (2015) Floral biology in Olea europaea subsp cuspidata: a comparative structural and functional characterization. Euphy 201(2):307–319

    Article  CAS  Google Scholar 

  • Cañas LA, Ávila J, Vicente M et al (1992) Micropropagation of olive (Olea europaea L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry Vol 18: High-tech and micropropagation II. Springer, Berlin, pp 493–505

    Google Scholar 

  • Cañas LA, Benbadis A (1988) In vitro plant regeneration from cotyledon fragments of the olive tree (Olea europaea L.). Plant Sci 54:65–74

    Article  Google Scholar 

  • Capelo AM, Silva S, Brito G et al (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tiss Organ Cult 103:237–242

    Article  CAS  Google Scholar 

  • Carmona R, Zafra A, Seoane P et al (2015) ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome. Front Plant Sci 6:625. https://doi.org/10.3389/fpls.2015.00625

    Article  PubMed  PubMed Central  Google Scholar 

  • Caruso T, Marra FP, Costa F et al (2014) Genetic diversity and clonal variation within the main Sicilian olive cultivars based on morphological traits and microsatellite markers. Sci Hort 180:130–138

    Article  CAS  Google Scholar 

  • Casanova L, Suárez MP, Fernández-Cabanás VM et al (2014) From the juvenile to the adult vegetative phase in olive seedlings: the transition along the stem axis. Span J Agr Res 12(4):1149–1157. https://doi.org/10.5424/sjar/2014124-6363

    Article  Google Scholar 

  • Cerezo S, Mercado JA, Pliego-Alfaro F (2011) An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tiss Organ Cult 106:337–344

    Article  CAS  Google Scholar 

  • Chaari A, Chelly-Chaabouni A, Maalej M et al (2002) Meski olive variety propagated by tissue culture. Acta Hort 586:871–874

    Article  CAS  Google Scholar 

  • Charafi J, El Meziane A, Moukhli A et al (2008) Menara gardens: a Moroccan olive germplasm collection identified by a SSR locus-based genetic study. Genet Res Crop Evol 55:893–900

    Article  CAS  Google Scholar 

  • Chiappetta A, Muto A, Bruno L et al (2015) A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. Front Plant Sci 6:392. https://doi.org/10.3389/fpls.2015.00392

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciccarese F, Ambrico A, Longo O et al (2002) Search for resistance to verticillium-wilt and leaf spot in olive. Acta Hort 586:717–720

    Article  Google Scholar 

  • Cipriani G, Marrazzo MT, Marconi R et al (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228

    Article  PubMed  CAS  Google Scholar 

  • Colella C, Miacola C, Amenduni M et al (2008) Sources of verticillium wilt resistance in wild olive germplasm from the Mediterranean region. Plant Pathol 57(3):533–539

    Article  Google Scholar 

  • Cozza R, Turco D, Briccoli-Bati C et al (1997) Influence of growth medium on mineral composition and leaf histology in micropropagated plantlets of Olea europaea. Plant Cell Tiss Organ Cul 51:215–223

    Article  CAS  Google Scholar 

  • Cruz F, Julca I, Gómez-Garrido J et al (2016) Genome sequence of the olive tree, Olea europaea. Gigasci 5:29. https://doi.org/10.1186/s13742-016-0134-5

    Article  CAS  Google Scholar 

  • Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Ann Rev Entom 55. https://doi.org/10.1146/annurev.ento.54.110807.090553

  • Dabbou S, Chaieb I, Rjiba I et al (2012) Multivariate data analysis of fatty acid content in the classification of olive oils developed through controlled crossbreeding. J Am Oil Chem Soc 89:667–674

    Article  CAS  Google Scholar 

  • De la Guardia MD, Alcántara E (2002) A comparison of ferric-chelate reductase and chlorophyll and growth ratios as indices of selection of quince, pear and olive genotypes under iron deficiency stress. Plant Soil 241(1):49–56. https://doi.org/10.1023/A:1016083512158

    Article  Google Scholar 

  • De la Rosa R, Angiolillo A, Guerrero C et al (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282. https://doi.org/10.1007/s00122-002-1189-5

    Article  PubMed  Google Scholar 

  • De la Rosa R, Arias-Calderón R, Velasco L, León L (2016) Early selection for oil quality components in olive breeding progenies. Eur J Lipid Sci Tech 118:1160–1167. https://doi.org/10.1002/ejlt.201500425

    Article  CAS  Google Scholar 

  • De la Rosa R, James CM, Tobutt KR (2004) Using microsatellites for paternity testing in olive progenies. HortSci 39(2):351–354

    Google Scholar 

  • De la Rosa R, Kiran AI, Barranco D, Leon L (2006) Seedling vigour as a preselection criterion for short juvenile period in olive breeding. Aust J Agr Res 57:477–481. https://doi.org/10.1071/ar05219

    Article  Google Scholar 

  • De la Rosa R, Klepo T, Arias-Calderon R et al (2014) Current status of conservation, evaluation and usefulness of wild olive germplasm. Acta Hort 1057:515–520

    Article  Google Scholar 

  • De la Rosa R, Leon L, Guerrero N et al (2007) Preliminary results of an olive cultivar trial at high density. Aust J Agric Res 58:392–395. https://doi.org/10.1071/AR06265

    Article  Google Scholar 

  • De la Rosa R, Talhaoui N, Rouis H et al (2013) Fruit characteristics and fatty acid composition in advanced olive breeding selections along the ripening period. Food Res Int 54(2):1890–1896

    Article  CAS  Google Scholar 

  • D’Hallewin G, Mulas M, Schirra M (1990) Characteristic of eleven table-olive clones selected from Nera cultivar. Acta Hort 286:48–52

    Google Scholar 

  • Díaz A, Martín A, Rallo P et al (2007) Cross-compatibility of the parents as the main factor for successful olive (Olea europaea L.) breeding crosses. J Am Soc Hort Sci 132:1–6

    Google Scholar 

  • Diez CM, Moral J, Cabello D et al (2016) Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards Front. Plant Sci 7:1226. https://doi.org/10.3339/fpls.2016.01226

    Article  Google Scholar 

  • Diez CM, Trujillo I, Barrio E et al (2011) Centennial olive trees as a reservoir of genetic diversity. Ann Bot 108:797–807. https://doi.org/10.1093/aob/mcr194

    Article  PubMed  PubMed Central  Google Scholar 

  • Díez CM, Trujillo I, Martinez-Urdiroz N et al (2015) Olive domestication and diversification in the Mediterranean Basin. New Phytol 206:436–447. https://doi.org/10.1111/nph.13181

    Article  PubMed  CAS  Google Scholar 

  • Dimassi-Theriou K (1994) In vitro propagation of cv. ‘Kalamon’ olives (Olea europaea sativa L.). Adv Hort Sci 8:185–189

    Google Scholar 

  • Domínguez-García MC, Belaj A, De La Rosa R et al (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Sci Hort 136:50–60. https://doi.org/10.1016/j.scienta.2011.12.017

    Article  CAS  Google Scholar 

  • Driver JA, Kuniyuki A (1984) In vitro propagation of paradox walnut rootstock (Juglans hindsii x Juglans regia) by tissue culture. HortSci 19(4):507–509

    Google Scholar 

  • El Aabidine AZ, Charafi J, Grout C et al (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50:2291. https://doi.org/10.2135/cropsci2009.10.0632

    Article  CAS  Google Scholar 

  • El Bakkali A, Haouan H, Moukhli A et al (2013) Construction of core collections suitable for association mapping to optimize use of Mediterranean olive (Olea europaea L.) genetic resources. PLoS ONE 8(5):e61265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Riachy M, Priego-Capote F, Leon L, de Castro MDL (2012a) Virgin olive oil phenolic profile and variability in progenies from olive crosses. J Sci Food Agr 92(12):2524–2533

    Article  CAS  Google Scholar 

  • El Riachy M, Priego-Capote F, Rallo L et al (2012b) Phenolic profile of virgin olive oil from advanced breeding selections. Span J Agr Res 10(2):443–453

    Article  Google Scholar 

  • El Riachy M, Priego-Capote F, Rallo L et al (2012c) Phenolic composition of virgin olive oils from cross breeding segregating populations. Eur J Lipid Sci Tech 114(5):542–551

    Article  CAS  Google Scholar 

  • El Riachy M, Rallo L, de la Rosa R, Leon L (2011) May soil solarization reduce the juvenile period in olive? HortSci 46(9):1241–1244

    Google Scholar 

  • Ersoy AH, Arsel F, Sefer U et al (2008) The first findings on the promising individuals from hybridization. Acta Hort 791:49–54

    Article  Google Scholar 

  • Fabbri A, Hormaza JI, Polito VS (1995) Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J Am Soc Hort Sci 120(3):538–542

    CAS  Google Scholar 

  • Farahani F, Yari R, Sheidai M (2011a) Molecular C-value and morphological analyses of somaclonal variation in three olive cultivars. Afr J Plant Sci 5(9):493–499

    CAS  Google Scholar 

  • Farahani F, Yari R, Sheidai M (2011b) Somaclonal variation in Dezful cultivar of olive (Olea europaea subsp. europaea). Gene Cons 40:216–233

    Google Scholar 

  • Faraloni C, Cutino I, Petruccelli R et al (2011) Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Envir Exp Bot 73:49–56

    Article  CAS  Google Scholar 

  • Fendri M, Trujillo I, Trigui A et al (2010) Simple sequence repeat identification and endocarp characterization of olive tree accessions in a Tunisian germplasm collection. HortSci 45:1429–1436

    Google Scholar 

  • Fernandes Serrano JM (1990) Clonal selection in Portuguese olive varieties. Acta Hort 286:53–56

    Article  Google Scholar 

  • Fernández JE, Moreno F (1999) Water use by the olive tree. J Crop Prod 2(2):101–162

    Article  Google Scholar 

  • Fernández-Ocaña A, García-López MC, Jiménez-Ruiz J et al (2010) Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genet Genom 6:891–903. https://doi.org/10.1007/s11295-010-0299-5

    Article  Google Scholar 

  • Fiorino P (ed) (2003) Olea. Trattato di olivicoltura. Edagricole. Bologna

    Google Scholar 

  • Fontanazza G, Baldoni L (1990) Proposed programme for the genetic improvement of the olive. Olivae 34:32–40

    Google Scholar 

  • Fourati H, Cossentini M, Karray B, Khlif M (2002a) Classification of olive trees according to fruit and oil characterization. Acta Hort 586:687–690

    Article  CAS  Google Scholar 

  • Fourati H, Cossentini M, Khlif M (2002b) Study of the sterolic fraction of some free crossbreeding olive cultivars. Acta Hort 586:683–686

    Article  CAS  Google Scholar 

  • Frisullo S, Camele I, Agosteo GE et al (2014) Brief historical account of olive leaf scorch (“brusca”) in the Salento peninsula of Italy and state-of-the-art of the olive quick decline syndrome. J Plant Path 96(3):441–449

    Google Scholar 

  • Gabaldón-Leal C, Ruiz-Ramos M, de la Rosa R et al (2017) Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain. Int J Climat 37:940–957. https://doi.org/10.1002/joc.5048

    Article  Google Scholar 

  • Garantonakis N, Varikou K, Birouraki A (2017) Influence of olive variety on biological parameters of Bactrocera oleae (Diptera: Tephritidae). Appl Entom Zool 52(2):189–196. https://doi.org/10.1007/s13355-016-0467-7

    Article  Google Scholar 

  • Garcia Berenguer A (1988) Selección clonal en Olea europaea L. cultivar Picual. ITEA 75:9–13

    Google Scholar 

  • Garcia JL, Avidan N, Troncoso A et al (2000) Possible juvenile-related proteins in olive tree tissues. Sci Hort 85:271–284

    Article  CAS  Google Scholar 

  • Garcia-Diaz A, Oya R, Sanchez A, Luque F (2003) Effect of prolonged vegetative reproduction of olive tree cultivars (Olea europaea L.) in mitochondrial homoplasmy and heteroplasmy. Genome 46:377–381

    Article  PubMed  CAS  Google Scholar 

  • García-Férriz L, Ghorbel R, Ybarra M et al (2002) Micropropagation from adult olive trees. Acta Hort 586:879–882

    Article  Google Scholar 

  • Garcia-Gonzalez DL, Tena N, Aparicio R (2010) Quality characterization of the new virgin olive oil var. Sikitita by phenols and volatile compounds. J Agr Food Chem 58(14):8357–8364

    Article  CAS  Google Scholar 

  • Garcia-Lopez MC, Vidoy I, Jimenez-Ruiz J et al (2014) Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering. Tree Genet Genom 10:585–603

    Google Scholar 

  • Garcia-Mozo H, Orlandi F, Galan C et al (2009) Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis. Theor Appl Climat 95(3–4):385–395. https://doi.org/10.1007/s00704-008-0016-6

    Article  Google Scholar 

  • Gaut BS, Díez CM, Morrell PL (2015) Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet 31:709–719. https://doi.org/10.1016/j.tig.2015.10.002

    Article  PubMed  CAS  Google Scholar 

  • Gemas VJV, Almadanim MCC, Tenreiro R et al (2004) Genetic diversity in the olive tree (Olea europaea L. subsp europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Genet Res Crop Evol 51:501–511. https://doi.org/10.1023/B:GRES.0000024152.16021.40

    Article  CAS  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture, vol I: The technology. Exegetics, Edington, UK

    Google Scholar 

  • Giovenzana V, Beghi R, Civelli R et al (2015) Postharvest characterization of olive oil fruits texture by NIR and Vis/NIR spectroscopy. In: Guidetti R, Bodria L, Best S (eds) Frutic Italy 2015: 9th Nut and Vegetable Production Engineering Symposium, vol 44, pp 61–66

    Google Scholar 

  • Gomes S, Martins-Lopes P, Lima-Brito J et al (2008) Evidence for clonal variation in ‘Verdeal-Trasmontana’ olive using RAPD, ISSR and SSR markers. J Hort Sci Biotech 83:395–400

    Article  CAS  Google Scholar 

  • Gómez-del-Campo M, Barranco D (2005) Field evaluation of frost tolerance in 10 olive cultivars. Plant Genet Resour-C 3(3):385–390. https://doi.org/10.1079/PGR200592

    Article  Google Scholar 

  • Gonçalves MF, Malheiro R, Casal S et al (2012) Influence of fruit traits on oviposition preference of the olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), on three Portuguese olive varieties (Cobrançosa, Madural and Verdeal Transmontana). Sci Hort 145:127–135. https://doi.org/10.1016/j.scienta.2012.08.002

    Article  Google Scholar 

  • Grasso F, Coppola M, Carbone F et al (2017) The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties. PLoS One 12(8). https://doi.org/10.1371/journal.pone.0183050

  • Grigoriadou K, Vasilakakis M, Eleftheriou EP (2002) In vitro propagation of the Greek olive cultivar ‘Chondrolia Chalkidikis’. Plant Cell Tiss Organ Cult 71:47–54

    Article  CAS  Google Scholar 

  • Guerfel M, Boujnah D, Baccouri B, Zarrouk M (2007) Evaluation of morphological and physiological traits for drought tolerance in 12 Tunisian olive varieties (Olea europaea L.). J Agron 6(2):356–361

    Article  Google Scholar 

  • Guerra D, Lamontanara A, Bagnaresi P et al (2015) Transcriptome changes associated with cold acclimation in leaves of olive tree (Olea europaea L.). Tree Genet Genom 11:113. https://doi.org/10.1007/s11295-015-0939-x

    Article  Google Scholar 

  • Haberman A, Bakhshian O, Cerezo-Medina S et al (2017) A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant, Cell Environ 40:1263–1280. https://doi.org/10.1111/pce.12922

    Article  CAS  Google Scholar 

  • Hackett WP (1985) Juvenility, maturation, and rejuvenation in woody plants. Hort Rev 7:109–155

    Google Scholar 

  • Hammami SBM, De la Rosa R, Sghaier-Hammami B et al (2012) Reliable and relevant qualitative descriptors for evaluating complex architectural traits in olive progenies. Sci Hort 143:157–166. https://doi.org/10.1016/j.scienta.2012.06.009

    Article  Google Scholar 

  • Hammami SBM, Leon L, Rapoport HF, De la Rosa R (2011) Early growth habit and vigour parameters in olive seedlings. Sci Hort 129(4):761–768. https://doi.org/10.1016/j.scienta.2011.05.038

    Article  Google Scholar 

  • Hancock JF (2008) Temperate fruit crop breeding. Springer, New York

    Book  Google Scholar 

  • Haouane H, El Bakkali A, Moukhli A et al (2011) Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimized management and use of Mediterranean olive genetic resources. Genet 139(9):1083–1094

    Article  Google Scholar 

  • Hartmann H, Schnathorst WC, Whisler J (1971) Oblonga—clonal olive rootstock resistant to verticillium wilt. Calif Agr 25(6):12–15

    Google Scholar 

  • Hartmann HT, Kester DE, Davies FT Jr, Geneve RL (2002) Plant propagation principles and practices. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Hartmann HT, Porlingis I (1957) Effect of different amounts of winter chilling on fruitfulness of several olive varieties. Bot Gaz 119(2):102–104

    Article  Google Scholar 

  • Hassani D, Tombesi A (2008) Vegetative growth of olive genotypes from a diallel cross. Acta Hort 791:137–142

    Article  Google Scholar 

  • Heinze B, Fussy B (2008) Somatic mutations as a useful tool for studying clonal dynamics in trees. Mol Ecol 17:4779–4781. https://doi.org/10.1111/j.1365-294X.2008.03964

    Article  PubMed  Google Scholar 

  • Hernandez ML, Belaj A, Sicardo MD et al (2017) Mapping quantitative trait loci controlling fatty acid composition in olive. Euphy 213:7

    Article  CAS  Google Scholar 

  • Hosseini-Mazinani M, Torkzaban B, Arab J (2013) Iranian Olive Catalogue. National Institute of Genetic Engineering and Biotechnology Press, Tehran

    Google Scholar 

  • Iannotta N, Noce ME, Ripa V et al (2007) Assessment of susceptibility of olive cultivars to the Bactrocera oleae (Gmelin, 1790) and Camarosporium dalmaticum (Thüm.) Zachos & Tzav.-Klon attacks in Calabria (southern Italy). J Envir Sci Heal B 42(7):789–793. https://doi.org/10.1080/03601230701551426

    Article  CAS  Google Scholar 

  • Imbroda I, Cabello Moreno B, Gallego J et al (2014) Frigoconservación in vitro de olivo (cultivar Arbequina). Acta Hort 69:139–140

    Google Scholar 

  • IOC (2017). International Olive Council. http://www.internationaloliveoil.org. Accessed 13 Nov 2017

  • İpek A, İpek M, Ercişli S, Tangu NA (2017) Transcriptome-based SNP discovery by GBS and the construction of a genetic map for olive. Funct Integr Genom 17:493–501. https://doi.org/10.1007/s10142-017-0552-1

    Article  CAS  Google Scholar 

  • Jimenez R, Rallo P, Suarez MP et al (2011) Cultivar susceptibility and anatomical evaluation of table olive fruit bruising. Acta Hort 924:419–424

    Article  Google Scholar 

  • Jiménez-Díaz RM, Cirulli M, Bubici G et al (2012) Verticillium wilt, a major threat to olive production: status and future prospects for its management. Plant Dis 96(3):304–329. https://doi.org/10.1094/pdis-06-11-0496

    Article  PubMed  Google Scholar 

  • Jiménez-Fernández D, Trapero-Casas JL, Landa BB et al (2016) Characterization of resistance against the olive-defoliating Verticillium dahliae pathotype in selected clones of wild olive. Plant Path 65(8):1279–1291. https://doi.org/10.1111/ppa.12516

    Article  CAS  Google Scholar 

  • Jiménez-Ruiz J, García-López MC, Vidoy I et al (2015) Transcriptional analysis of adult cutting and juvenile seedling olive roots. Tree Genet Genom 11:77. https://doi.org/10.1007/s11295-015-0898-2

    Article  Google Scholar 

  • Johnson R, Jellis GJ (1992) Breeding for disease resistance, vol 1. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kamoun NG, Khilf M, Ayadi M, Karray B (2002) Clonal selection of olive tree variety “Chemlali Sfax”: preliminary results. Acta Hort 586:147–150

    Article  Google Scholar 

  • Kaya HB, Cetin O, Kaya HS et al (2016) Association mapping in Turkish olive cultivars revealed significant markers related to some important agronomic traits. Biochem Gen 54:506–533

    Article  CAS  Google Scholar 

  • Khlif M, Trigui A (1990) Olive cultivars investigations. Preliminary results. Acta Hort 286:65–68

    Article  Google Scholar 

  • Klepo T, Toumi A, de la Rosa R et al (2014) Agronomic evaluation of seedlings from crosses between the main Spanish olive cultivar ‘Picual’ and two wild olive trees. J Hort Sci Biotech 89(5):508–512

    Article  Google Scholar 

  • Koubouris GC, Breton CM, Metzidakis IT, Vasilakakis MD (2014) Self-incompatibility and pollination relationships for four Greek olive cultivars. Sci Hort 176:91–96. https://doi.org/10.1016/J.Scienta.2014.06.043

    Article  Google Scholar 

  • Lambardi M, Amorisi S, Caricato G et al (1999) Microprojectile-DNA delivery in somatic embryos of olive (Olea europaea L.). Acta Hort 474:505–509

    Article  CAS  Google Scholar 

  • Lambardi M, Benelli C, Carlo De et al (2002) Medium and long-term in vitro conservation of olive germplasm (Olea europaea L.). Acta Hort 586:109–112

    Article  Google Scholar 

  • Lambardi M, Ozudogru EA, Roncasaglia R (2013) In vitro propagation of olive (Olea europaea L.) by nodal segmentation of elongated shoots. In: Lambardi M, Ozudogru EA, Jain SM (eds) Protocols for micropropagation of selected economically-important horticultural plants. Springer, New York, pp 33–44

    Chapter  Google Scholar 

  • Larkin PJ, Scowcroft SC (1981) Somaclonal variation-a novel source of variability from cell culture for plant improvement. Theor App Genet 60:197–214

    Article  CAS  Google Scholar 

  • Lavee S (1990) Aims, methods, and advances in breeding of new olive (Olea europaea L.) cultivars. Acta Hort 286:23–36

    Article  Google Scholar 

  • Lavee S (2012) From the olive tree to olive oil—new trends and future challenges. Acta Hort 924:263–276

    Google Scholar 

  • Lavee S (2013) Evaluation of the need and present potential of olive breeding indicating the nature of the available genetic resources involved. Sci Hort 161:333–339. https://doi.org/10.1016/j.scienta.2013.07.002

    Article  Google Scholar 

  • Lavee S, Avidan B (2011) Heredity diversity in populations of free-, self-, and specific cross-pollinated progenies of some olive (Olea europaea L.) cultivars. Isr J Plant Sci 59(1):29–37

    Article  Google Scholar 

  • Lavee S, Avidan N, Haskal A, Ogrodovich A (1996) Juvenility period reduction in olive seedlings- a tool for enhancement of breeding. Olivae 60:33–41

    Google Scholar 

  • Lavee S, Harshemesh H, Haskal A et al (1999) ‘Maalot’ a new cultivar for oil extraction resistant to Spilocaea oleagina (Cast.). Acta Hort 474:125–128

    Article  Google Scholar 

  • Lavee S, Singer A, Haskal A et al (2008) Diversity in performance between trees within the traditional Souri olive cultivar (Olea europaea L.) in Israel under rain-fed conditions. Olivae 109:33–45

    Google Scholar 

  • Leitao F, Serrano JF, Potes MF et al (1999) Preliminary results on clonal and sanitary selection of Olea europaea L Cv ‘Santulhana’ in north-east of Portugal. Acta Hort 474:163–166

    Article  Google Scholar 

  • Leon L (2012) Usefulness of portable near infrared spectroscopy in olive breeding programs. Span J Agr Res 10:141–148

    Article  Google Scholar 

  • Leon L, Arias-Calderon R, de la Rosa R et al (2016) Optimal spatial and temporal replications for reducing environmental variation for oil content components and fruit morphology traits in olive breeding. Euphy 207(3):675–684

    Article  Google Scholar 

  • Leon L, Beltran G, Aguilera MP et al (2011) Oil composition of advanced selections from an olive breeding program. Eur J Lipid Sci Tech 113(7):870–875

    Article  CAS  Google Scholar 

  • Leon L, De la Rosa R, Barranco D, Rallo L (2007) Breeding for early bearing in olive. HortSci 42(3):499–502

    Google Scholar 

  • Leon L, De la Rosa R, Gracia A et al (2008) Fatty acid composition of advanced olive selections obtained by crossbreeding. J Sci Food Agr 88(11):1921–1926

    Article  CAS  Google Scholar 

  • Leon L, Downey G (2006) Preliminary studies by visible and near-infrared reflectance spectroscopy of juvenile and adult olive (Olea europaea L.) leaves. J Sci Food Agr 86:999–1004

    Article  CAS  Google Scholar 

  • Leon L, Martin LM, Rallo L (2004a) Repeatability and minimum selection time for fatty acid composition in olive progenies. HortSci 39:477–480

    CAS  Google Scholar 

  • Leon L, Rallo L, Del Rio C, Martin M (2004b) Variability and early selection on the seedling stage for agronomic traits in progenies from olive crosses. Plant Breed 123:73–78

    Article  Google Scholar 

  • Leon L, Rallo L, Garrido A (2003) Near-infrared spectroscopy (NIRS) analysis of intact olive fruit: a useful tool in olive breeding programs. Grasas Aceites 54:41–47

    Article  CAS  Google Scholar 

  • Leon L, Velasco L, de la Rosa R (2015) Initial selection steps in olive breeding programs. Euphy 201(3):453–462

    Article  Google Scholar 

  • Leva A (2009) Morphological evaluation of olive plants micropropagated in vitro culture through axillary buds and somatic embryogenesis methods. Afric J Plant Sci 3(3):37–43

    Google Scholar 

  • Leva AR, Muleo R, Petruccelli R (1995) Long-term embryogenesis from immature olive cotyledons. J Hort Sci 70(3):417–421

    Article  Google Scholar 

  • Leva AR, Petruccelli R (2012) Monitoring of cultivar identity in micropropagated olive plants using RAPD and ISSR markers. Biolog Plant 56(2):373–376

    Article  CAS  Google Scholar 

  • Leva AR, Sadeghi H, Petruccelli R (2013) Carbohydrates modulate the in vitro growth of olive microshoots. I. The analysis of shoot growth and branching patterns. J Plant Growth Regul 32:53–60

    Article  CAS  Google Scholar 

  • Leyva-Pérez MD, Jiménez-Ruiz J, Gómez-Lama Cabanás C et al (2017) Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. New Phytol. https://doi.org/10.1111/nph.14833

    Article  PubMed  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • López-Doncel LM, Trapero A, García-Berenguer A (1999) Resistance of olive tree cultivars to leaf spot caused by Spilocaea oleagina. Acta Hort 474:549–554

    Article  Google Scholar 

  • López-Escudero FJ, Mercado-Blanco J (2011) Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 344(1):1–50

    Article  CAS  Google Scholar 

  • Luvisi A, Aprile A, Sabella E et al (2017) Xylella fastidiosa subsp. pauca (CoDiRO strain) infection in four olive (Olea europaea L.) cultivars: profile of phenolic compounds in leaves and progression of leaf scorch symptoms. Phytopath Medit 56(2):259–273. https://doi.org/10.14601/phytopathol_mediterr-20578

    Article  Google Scholar 

  • Lynch PT, Siddika A, Johnston JW et al (2011) Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci 181:47–56

    Article  PubMed  CAS  Google Scholar 

  • Lynch PT, Siddika A, Mehra A et al (2007) The challenge of successful cryopreservation of olive (Olea europaea L.) shoot tip. Adv Hort Sci 21:211–214

    Google Scholar 

  • Mailer RJ (2004) Rapid evaluation of olive oil quality by NIR reflectance spectroscopy. J Am Oil Chem Soc 81:823–827

    Article  CAS  Google Scholar 

  • Malheiro R, Casal S, Baptista P, Pereira JA (2015) Physico-chemical characteristics of olive leaves and fruits and their relation with Bactrocera oleae (Rossi) cultivar oviposition preference. Sci Hort 194:208–214. https://doi.org/10.1016/j.scienta.2015.08.017

    Article  CAS  Google Scholar 

  • Mancuso S, Azzarello E (2002) Heat tolerance in olive. Adv Hort Sci 16(3–4):125–130

    Google Scholar 

  • Marcelo A, Fernandes M, Fatima Potes M, Serrano JF (1999) Reactions of some cultivars of Olea europaea L. to experimental inoculation with Pseudomonas syringae pv. savastanoi. Acta Hort 474:581–584

    Article  Google Scholar 

  • Marchese A, Marra FP, Caruso T et al (2016) The first high-density sequence characterized SNP-based linkage map of olive (Olea europaea L. subsp. europaea) developed using genotyping by sequencing. Aust J Crop Sci 10:857–863

    Article  Google Scholar 

  • Marin L, Benlloch M, Fernández-Escobar R (1995) Screening of olive cultivars for salt tolerance. Sci Hort 64(1–2):113–116. https://doi.org/10.1016/0304-4238(95)00832-6

    Article  Google Scholar 

  • Martinez D, Arroyo-Garcia R, Revilla MA (1999) Cryopreservation of in vitro grown shoots-tips of Olea europaea cv Arbequina. CryoLett 20:29–36

    Google Scholar 

  • Martins A, Santos L, Lopes J, Gouveia J (1998) Primeiros resultados da seleção da variedade de oliveira Cobrançosa. Rev Ciên Agr 21(1–4):35–46

    Google Scholar 

  • Martins-Lopes P, Gomes S, Lima-Brito J et al (2009) Assessment of clonal genetic variability in Olea europaea L. “Cobrançosa” by molecular markers. Sci Hort 123:82–89. https://doi.org/10.1016/J.SCIENTA.2009.08.001

    Article  CAS  Google Scholar 

  • Mazri MA, Belkoura I, Pliego-Alfaro F et al (2013) Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci Hort 159:88–95

    Article  Google Scholar 

  • Medina E, Morales-Sillero A, Ramirez EM et al (2012) New genotypes of table olives: profile of bioactive compounds. Int J Food Sci Tech 47(11):2334–2341

    Article  CAS  Google Scholar 

  • Mencuccini M, Rugini E (1993) In vitro shoot regeneration from olive cultivar tissues. Plant Cell Tiss Organ Cult 32:283–288

    Article  CAS  Google Scholar 

  • Mendil M, Sebai A (2006) L’olivier en Algérie. Institut Technique de l’Arboriculture Fruitiére et de la Vigne, pp 48–86

    Google Scholar 

  • Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro-derived explants of olive (Olea europaea L. cv. Moraiolo) II. Effects of storage on capsule and derived shoots performance. Sci Hort 113:286–292

    Article  Google Scholar 

  • Micheli M, Mencuccini M, Standardi A (1998) Encapsulation of in vitro proliferated buds of olive. Adv Hort Sci 12:63–168

    Google Scholar 

  • Mitrakos K, Alexaki A, Papadimitriou P (1992) Dependence of olive morphogenesis on callus origin and age. J Plant Phys 139(3):269–273

    Article  Google Scholar 

  • Moore GA (2001) Oranges and lemons: clues to the taxonomy of citrus from molecular markers. Trends Genet 17:536–540. https://doi.org/10.1016/S0168-9525(01)02442-8

    Article  PubMed  CAS  Google Scholar 

  • Moral J, Alsalimiya M, Roca LF et al (2015) Relative susceptibility of new olive cultivars to Spilocaea oleagina, Colletotrichum acutatum, and Pseudocercospora cladosporioides. Plant Dis 99(1):58–64. https://doi.org/10.1094/PDIS-04-14-0355-RE

    Article  PubMed  Google Scholar 

  • Moral J, Diez CM, Leon L et al (2013) Female genitor effect on the juvenile period of olive seedlings. Sci Hort 156:99–105

    Article  Google Scholar 

  • Moral J, Trapero A (2009) Assessing the susceptibility of olive cultivars to anthracnose caused by Colletotrichum acutatum. Plant Dis 93(10):1028–1036. https://doi.org/10.1094/PDIS-93-10-1028

    Article  PubMed  Google Scholar 

  • Morales-Sillero A, Fernandez-Cabanas VM, Casanova L et al (2011) Feasibility of NIR spectroscopy for non-destructive characterization of table olive traits. J Food Eng 107(1):99–106. https://doi.org/10.1016/j.jfoodeng.2011.05.039

    Article  CAS  Google Scholar 

  • Moreno-Alías I, León L, De la Rosa R, Rapoport HF (2009) Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees 23:181–187

    Article  Google Scholar 

  • Moreno-Alías I, Rapoport HF, León L, de la Rosa R (2010a) Olive seedling first-flowering position and management. Sci Hort 124:74–77

    Article  Google Scholar 

  • Moreno-Alías I, Rapoport HF, López R et al (2010b) Optimizing early flowering and pre-selection for short juvenile period in olives seedlings. Hort Sci 45:519–522

    Google Scholar 

  • Moutier N, Pinatel C, Martre A et al (2004) Identification et caractérisation des variétés d’olivier cultivées en France. Naturalia Publication

    Google Scholar 

  • Muñoz-Diez C, Imperato A, Rallo L et al (2012) Worldwide Core Collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci 52(1):211–221. https://doi.org/10.2135/cropsci2011.02.0110

    Article  Google Scholar 

  • Muñoz-Mérida A, González-Plaza JJ, Cañada A et al (2013) De novo assembly and functional annotation of the olive (Olea europaea) transcriptome. DNA Res 20:93–108. https://doi.org/10.1093/dnares/dss036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Muzzalupo I, Chiappetta A, Benincasa C, Perri E (2010) Intra-cultivar variability of three major olive cultivars grown in different areas of central-southern Italy and studied using microsatellite markers. Sci Hort 126:324–329

    Article  Google Scholar 

  • Nikoloudakis N, Banilas G, Gazis F et al (2003) Discrimination and genetic diversity among cultivated olives of Greece using RAPD markers. J Am Soc Hort Sci 128:741–746

    CAS  Google Scholar 

  • Noormohammadi Z, Hosseini-Mazinani M, Trujillo I et al (2007) Identification and classification of main Iranian olive cultivars using microsatellite markers. HortSci 42(7):1545–1550

    Google Scholar 

  • Orinos T, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in callus from wild olive [Olea europaea var. sylvestris (Miller) Lehr] mature zygotic embryos. Plant Cell Tiss Organ Cult 27:183–187

    Article  Google Scholar 

  • Ozdemir Y, Kurultay S (2015) Determination of physicochemical properties of some crossed olives and their convenience to black table olive fermentation by using Lactobacillus plantarum as a starter culture. J Int Sci Publ: Agric Food 3:416–424

    Google Scholar 

  • Ozdemir Y, Ozturk A, Guven E et al (2016) Fruit and oil characteristics of olive candidate cultivars from Turkey. Not Bot Horti Agrobo 44(1):147–154

    Article  CAS  Google Scholar 

  • Padula G, Giordani E, Bellini E et al (2008) Field evaluation of new olive (Olea europaea L.) selections and effects of genotype and environment on productivity and fruit characteristics. Adv Hort Sci 22(2):87–94

    Google Scholar 

  • Palliotti A, Bongi G (1996) Freezing injury in the olive leaf and effects of mefluidide treatment. J Hort Sci Biotech 71(1):57–63

    Article  CAS  Google Scholar 

  • Peixe A, Raposo A, Lourenço H et al (2007) Coconut water and BAP successfully replaced zeatin in olive (Olea europaea L.) micropropagation. Sci Hort 113:1–7

    Article  CAS  Google Scholar 

  • Pelsy F, Hocquigny S, Moncada X et al (2010) An extensive study of the genetic diversity within seven French wine grape variety collections. Theor Appl Genet 120:1219–1231. https://doi.org/10.1007/s00122-009-1250-8

    Article  PubMed  Google Scholar 

  • Penyalver R, García A, Ferrer A et al (2006) Factors affecting Pseudomonas savastanoi pv. savastanoi plant inoculations and their use for evaluation of olive cultivar susceptibility. Phytopath 96(3):313–319. https://doi.org/10.1094/phyto-96-0313

    Article  CAS  Google Scholar 

  • Perez AG, de la Rosa L, Pascual M et al (2016) Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of Picual x Arbequina cultivars. J Chromatogr A 1428:305–315

    Article  PubMed  CAS  Google Scholar 

  • Perez AG, Leon L, Pascual M et al (2014) Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea l. and sensory and nutritional quality. PLoS ONE 9(3):e92898. https://doi.org/10.1371/journal.pone.0092898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Barranco G, Torreblanca R, Padilla IMG et al (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection. II. Transient transformation via particle bombardment. Plant Cell Tiss Organ Cult 97:243–251

    Article  CAS  Google Scholar 

  • Peyvandi M, Farahani F, Noormohamadi Z et al (2009a) Mass production of Olea europaea L. (cv. Rowghani) through micropropagation. Gen Appl Plant Phys 35(1–2):35–43

    CAS  Google Scholar 

  • Peyvandi M, Noormohamadi Z, Baninashemi O et al (2009b) Molecular analysis of genetic stability in long-term micropropagated shoots of Olea europaea L. (cv. Dezful). Asian J Plant Sci 8(2):146–152

    Article  CAS  Google Scholar 

  • Pontikis CA, Loukas M, Kousonis G (1980) The use of biochemical markers to distinguish olive cultivars. J Hort Sci Biotech 55:333–343

    Article  CAS  Google Scholar 

  • Priego JM (1935) Las variedades de olivo generalizadas en España. Instituto de Investigaciones Agronómicas, Madrid

    Google Scholar 

  • Pritsa TS, Voyiatzis DG (2004) The in vitro morphogenetic capacity of olive embryo explants at different developmental stages, as affected by L-Glutamine, L-Arginine and 2,4-D. J Biol Res 1:55–61

    CAS  Google Scholar 

  • Pritsa TS, Voyiatzis DG, Voyiatzis CJ, Sotiriou MS (2003) Evaluation of vegetative growth traits and their relation to time to first flowering of olive seedlings. Aust J Agr Res 54:371–376

    Article  Google Scholar 

  • Rallo L (1995) Selección y mejora genética del olivo en España. Olivae 59:46–53

    Google Scholar 

  • Rallo L (2014a) Breeding oil and table olives for mechanical harvesting in Spain. Horttechn 24:295–300

    Google Scholar 

  • Rallo L (2014b) Looking towards tomorrow in olive growing challenges in breeding. Acta Hort 1057:467–482

    Article  Google Scholar 

  • Rallo L, Barranco D, Caballero JM et al (eds) (2005) Variedades de olivo en España, Junta de Andalucía, MAPA. Ediciones Mundiprensa, Madrid, pp 80–231

    Google Scholar 

  • Rallo L, Barranco D, Castro-Garcia S et al (2013) High-Density Olive Plantations. Hortic Rev 41:303–384. https://doi.org/10.1007/s00122-003-1301-5

  • Rallo L, Barranco D, De la Rosa R et al (2008a) ‘Chiquitita’ olive. HortSci 43(2):529–531

    Google Scholar 

  • Rallo L, Barranco D, De la Rosa R, León L (2016a) New olive cultivars and selections in Spain: results after 25 years of breeding. Abstract, VIII International Symposium in Olive Growing. ISHS. Splitz. Croatia

    Google Scholar 

  • Rallo L, Caruso T, Díez CM, Campisi G (2016b) Olive growing in a time of change: from empiricism to genomics. In: Rugini E, Baldoni L, Mulea R, Sabastini L (eds) The olive tree genome, compendium of plant genomes. Springer International Publishing AG, New York, pp 55–64. https://doi.org/10.1007/978-3-319-48887-5_4

    Chapter  Google Scholar 

  • Rallo L, Cuevas J, Rapoport HF (1990) Fruit-set pattern in self-pollinated and open-pollinated olive cultivars. Acta Hort 286:219–222

    Article  Google Scholar 

  • Rallo L, Díez CM, Morales-Sillero A et al (2017) Quality of olives: a focus on agricultural preharvest factors. Sci Hort in press

    Google Scholar 

  • Rallo L, El Riachy M, Rallo P (2011) The time and place for fruit quality in olive breeding. In: Jenks MA, Bebeli JB (eds) Breeding for fruit quality. Wiley-Blackwell, West Sussex, pp 323–347

    Chapter  Google Scholar 

  • Rallo P (2000b) Desarrollo y aplicación de marcadores microsatélites en olivo (Olea europaea L.). PhD. diss. Universidad de Córdoba, Spain

    Google Scholar 

  • Rallo P, Dorado G, Martin A (2000a) Development of simple sequence repeats (SSR) in olive tree (Olea europaea L.). Theor Appl Genet 101:984–989

    Article  CAS  Google Scholar 

  • Rallo P, Jiménez R, Morales-Sillero A et al (2012) Evaluation of table-olive quality parameters in progenies obtained by cross-breeding. Acta Hort 949:527–532

    Article  Google Scholar 

  • Rallo P, Jiménez R, Ordovás J, Suárez MP (2008b) Possible early selection of short juvenile period olive plants based on seedling traits. Aust J Agr Res 59:933. https://doi.org/10.1071/AR08013

    Article  Google Scholar 

  • Rallo P, Toledo E, Suárez MP et al (2008c) Variabilidad en los contenidos de azúcares y polifenoles en pulpa verde de aceituna: evaluación de progenies. Actas Hort 51:351–352

    Google Scholar 

  • Rallo P, Morales-Sillero A, Brenes M et al (2018) Elaboration of table olives: assessment of new olive genotypes. Eur J Lipid Sci Tech 1800008. https://doi.org/10.1002/ejlt.201800008

  • Rama P, Pontikis CA (1990) In vitro propagation of olive (Olea europaea sativa L.) ‘Kalamon’. J Hort Sci 65(3):347–353

    Article  CAS  Google Scholar 

  • Ramos A, Rapoport HF, Cabello D, Rallo L (2018) Chilling accumulation, dormancy release temperature, and the role of leaves in olive reproductive budburst: evaluation using shoot explants. Sci Hort 230 https://doi.org/10.1016/j.scienta.2017.11.003

  • Rapoport HF (2014) The reproductive biology of the olive tree and its relationship to extreme environmental conditions. Acta Hort 1057:41–50

    Article  Google Scholar 

  • Revilla MA, Pacheco J, Casares A et al (1996) In vitro reinvigoration of mature olive trees (Olea europaea L.) through micrografting. In Vitro Cell Dev Biol Plant 32:257–261

    Article  Google Scholar 

  • Rhouma A, Chettaoui M, Krid S et al (2013) Evaluation of susceptibility of an olive progeny (Picholine x Meski) to olive leaf spot disease caused by Fusicladium oleagineum. Eur J Plant Pathol 135(1):23–33. https://doi.org/10.1007/s10658-012-0062-x

    Article  Google Scholar 

  • Ripa V, De Rose F, Caravita MA et al (2008) Qualitative evaluation of olive oils from new olive selections and effects of genotype and environment on oil quality. Adv Hort Sci 22(2):95–103

    Google Scholar 

  • Rjiba I, Dabbou S, Gazzah N, Hammami M (2010) Effect of crossbreeding on the chemical composition and biological characteristics of Tunisian new olive progenies. Chem Biodivers 7(3):649–655

    Article  PubMed  CAS  Google Scholar 

  • Roca M, Leon L, de La Rosa R (2011) Pigment metabolism of ‘Sikitita’ olive (Olea europaea L.): a new cultivar obtained by cross-breeding. J Agr Food Chem 59(5):2049–2055

    Article  CAS  Google Scholar 

  • Rodriguez-Castillo E, Diaz A, Belaj A, De la Rosa R (2009) Inter-compatibility relationships in olive as revealed by paternity tests with SSR markers. Acta Hort 814:659–662

    Article  CAS  Google Scholar 

  • Roselli G and Donini B. (1982) ‘Briscola’ nuova cultivar di a sviluppo compatto. Rivista di ortoflorofrutticoltura italiana 66:103–114

    Google Scholar 

  • Roussos PA, Pontikis CA (2002) In vitro propagation of olive (Olea europaea L.) cv. Koroneiki Plant Growth Rag 37:295–304

    Article  CAS  Google Scholar 

  • Rugini E (1984) In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hort 24:123–134

    Article  CAS  Google Scholar 

  • Rugini E (1988) Somatic embryogenesis and plant regeneration in olive (Olea europaea L.). Plant Cell Tiss Organ Cult 14:207–214

    Article  Google Scholar 

  • Rugini E (1995) Somatic embryogenesis in olive. In: Jain SM, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 2. Kluwer Academic Publishers, Dordrecht, pp 171–189

    Chapter  Google Scholar 

  • Rugini E, Baldoni L (2005) Olea europaea Olive. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Cambridge, pp 404–428

    Chapter  Google Scholar 

  • Rugini E, Biasi R, Muleo R (2000) Olive (Olea europaea var sativa) transformation. In: Jain SM, Minocha S (eds) Molecular biology of woody plants. Kluwer Academic Publishers, Dordrecht, pp 245–279

    Google Scholar 

  • Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260

    Article  CAS  PubMed  Google Scholar 

  • Rugini E, Cristofori V, Silvestri C (2016) Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods. Biotech Adv 34:687–696. https://doi.org/10.1016/j.biotechadv.2016.03.004

    Article  CAS  Google Scholar 

  • Rugini E, De Pace C (2016) Olive breeding with classical and modern approaches. In: Rugini E, Baldoni L, Mulea R, Sabastini L (eds) The olive tree genome, compendium of plant genomes. Springer International Publishing AG, New York, pp 163–191. https://doi.org/10.1007/978-3-319-48887-5_10

    Chapter  Google Scholar 

  • Rugini E, Fontanazza G (1981) In vitro propagation of ‘Dolce Agogia´ olive. HortSci 16(4):492–493

    Google Scholar 

  • Rugini E, Gutiérrez-Pesce P, Muleo R (2008) Olive. In: Kole C, Hall TC (eds) Compendium of transgenic crops plants: transgenic temperate fruits and nuts. Blackwell Publishing, Oxford, pp 233–258

    Chapter  Google Scholar 

  • Rugini E, Jacoboni A, Luppino M (1993) Role of basal shoot darkening and exogenous putrescine treatments on in vitro rooting and on endogenous polyamine changes in difficult-to-root woody species. Sci Hort 53:63–72

    Article  CAS  Google Scholar 

  • Rugini E, Pezza A, Muganu M et al (1995) Somatic embryogenesis in olive (Olea europaea L.). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol 30, Somatic embryogenesis and synthetic seed I. Springer, Berlin, pp 404–414

    Chapter  Google Scholar 

  • Ruiz N, Barranco D, Rapoport HF (2006) Anatomical response of olive (Olea europaea L.) to freezing temperatures. J Hort Sci Biotech 81(5):783–790

    Article  Google Scholar 

  • Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation-vitrification protocols. In: Reed B (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 33–58

    Chapter  Google Scholar 

  • Sanchez de Medina V, Calderon-Santiago M, El Riachy M et al (2015a) Influence of genotype on the fatty acids composition of virgin olive oils from advanced selections obtained by crosses between Arbequina, Picual, and Frantoio cultivars along the ripening process. Eur J Lipid Sci Tech 117(8):1261–1270

    Article  CAS  Google Scholar 

  • Sanchez de Medina V, El Riachy M, Priego-Capote F, Luque de Castro MDL (2015b) Composition of fatty acids in virgin olive oils from cross breeding segregating populations by gas chromatography separation with flame ionization detection. J Sci Food Agr 95(14):2892–2900

    Article  CAS  Google Scholar 

  • Sanchez de Medina VM, Priego-Capote F, Luque de Castro MDL (2015c) The effect of genotype and ripening index on the phenolic profile and fatty acids composition of virgin olive oils from olive breeding programs. Eur J Lipid Sci Tech 117(7):954–966

    Article  CAS  Google Scholar 

  • Santos-Antunes F, León L, de la Rosa R et al (2005) The length of the juvenile period in olive as influenced by vigor of the seedlings and the precocity of the parents. HortSci 40:1213–1215

    Google Scholar 

  • Santos-Antunes F, Mohedo A, Trujillo I, Rallo L (1999) Influence of the genitors on the flowering of olive seedlings under forced growth. Acta Hort 474:103–105

    Article  Google Scholar 

  • Sanchez-Romero C, Swennen R, Panis B (2009) Cryopreservation of olive embryogenic cultures. CryoLett 30(5):359–372

    CAS  Google Scholar 

  • Saponari M, Boscia D, Nigro F, Martelli GP (2013) Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J Plant Path 95(3):668. https://doi.org/10.4454/JPP.V95I3.035

    Article  Google Scholar 

  • Sarkar N, Schmid-Siegert E, Iseli C et al (2017) Low rate of somatic mutations in a long-lived oak tree. bioRxiv 149203. https://doi.org/10.1101/149203

  • Seifi E, Guerin J, Kaiser B, Sedgley M (2011) Sexual compatibility and floral biology of some olive cultivars. New Zeal J Crop Hort 39:141–151. https://doi.org/10.1080/01140671.2011.560165

    Article  Google Scholar 

  • Selak GV, Cuevas J, Ban SG, Perica S (2014) Pollen tube performance in assessment of compatibility in olive (Olea europaea L.) cultivars. Sci Hort 165:36–43. https://doi.org/10.1016/j.scienta.2013.10.041

    Article  Google Scholar 

  • Sgamma T, Jackson A, Muleo R et al (2014) TEMPRANILLO is a regulator of juvenility in plants. Sci Rep-UK 4:3704. https://doi.org/10.1038/srep03704

    Article  Google Scholar 

  • Sghir S, Chatelet P, Ouazzani N et al (2005) Micropropagation of eight Moroccan and French olive cultivars. HortSci 40(1):193–196

    CAS  Google Scholar 

  • Shibli RA, AI-Juboory KH (2000) Cryopreservation of ‘Nabali’ olive (Olea europaea L.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. CryoLett 21(6):357–366

    CAS  Google Scholar 

  • Shibli RA, Shatnawi M, Abu E et al (2001) Somatic embryogenesis and plant recovery from callus of ‘Nabali’ olive (Olea europaea L.). Sci Hort 88:243–256

    Article  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Phys Plant 121(1):58–65. https://doi.org/10.1111/j.0031-9317.2004.00294.x

    Article  CAS  Google Scholar 

  • Sorrentino G, Muzzalupo I, Muccilli S et al (2016) New accessions of Italian table olives (Olea europaea): characterization of genotypes and quality of brined products. Sci Hort 213:34–41

    Article  Google Scholar 

  • Stokstad E (2015) Italy’s olives under siege: blight alarms officials across Europe. Science 348(35):620. https://doi.org/10.1126/science.348.6235.620

    Article  PubMed  CAS  Google Scholar 

  • Suárez MP, Casanova L, Jiménez R et al (2011) Variability of first flower to ground distance in olive seedlings and its relationship with the length of the juvenile period and the parent genotype. Sci Hort 129(4):747–751

    Article  Google Scholar 

  • Suarez MP, Lopez-Rivares EP, Cantero ML, Ordovas J (1990) Clonal selection on ‘Manzanilla de Sevilla’. Acta Hort 286:117–119

    Article  Google Scholar 

  • This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519. https://doi.org/10.1016/j.tig.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  • Tous J, Romero A, Plana J (1999) IRTA-i 18 clon de la variedad de olivo Arbequina. Olivae 77:50–52

    Google Scholar 

  • Tous J, Romero A, Plana J et al (2005) Selección clonal en variedades. In: Rallo L, Barranco D, Caballero JM et al (eds) Variedades de olivo en España (Libro II: Variabilidad y selección). Junta de Andalucía, MAPA y Ediciones Mundi-Prensa, Madrid

    Google Scholar 

  • Torreblanca R, Cerezo S, Palomo-Ríos E et al (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tiss Organ Cult 103:61–69

    Article  CAS  Google Scholar 

  • Trapero C, Díez CM, Rallo L et al (2013a) Effective inoculation methods to screen for resistance to verticillium wilt in olive. Sci Hortic 162:252–259. https://doi.org/10.1016/j.scienta.2013.08.036

    Article  Google Scholar 

  • Trapero C, Rallo L, López-Escudero FJ et al (2015) Variability and selection of verticillium wilt resistant genotypes in cultivated olive and in the Olea genus. Plant Pathol 64(4):890–900. https://doi.org/10.1111/ppa.12330

    Article  Google Scholar 

  • Trapero C, Serrano N, Arquero O et al (2013b) Field resistance to Verticillium wilt in selected olive cultivars grown in two naturally infested soils. Plant Dis 97(5):668–674. https://doi.org/10.1094/PDIS-07-12-0654-RE

    Article  PubMed  Google Scholar 

  • Trabelsi EB, Bouzid S, Bouzid M et al (2003) In vitro regeneration of olive tree by somatic embryogenesis. J Plant Biol 46(3):173–180

    Article  CAS  Google Scholar 

  • Trigui A, Msallem M, Yengui A et al (2002) Oliviers de Tunisie (1). Ministère de l’Agriculture IRESA, Institute l’Olivier, République Tunisienne

    Google Scholar 

  • Trigui A, Yengui A, Belguith H (2006) Olive germplasm in Tunisia. Olea 25:19–23

    Google Scholar 

  • Trujillo I, Arus P, Rallo L (1995) Identification of olive cultivars by isozyme analysis. J Amer Soc Hort Sci 120(2):318–324

    CAS  Google Scholar 

  • Trujillo I, Ojeda MA, Urdiroz NM et al (2014) Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genom 10:141–155. https://doi.org/10.1007/s11295-013-0671-3

    Article  Google Scholar 

  • Tugendhaft Y, Eppel A, Kerem Z et al (2016) Drought tolerance of three olive cultivars alternatively selected for rain fed or intensive cultivation. Sci Hort 199:158–162. https://doi.org/10.1016/j.scienta.2015.12.043

    Article  Google Scholar 

  • Unver T, Wu Z, Sterck L et al (2017) Genome of wild olive and the evolution of oil biosynthesis. Proc Nat Acad Sci USA 114:E9413–E9422. https://doi.org/10.1073/pnas.1708621114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hort Res 1:14022. https://doi.org/10.1038/hortres.2014.22

    Article  Google Scholar 

  • Velasco L, Fernandez-Cuesta A, De la Rosa R et al (2014) Selection for some olive oil quality components through the analysis of fruit flesh. J Am Oil Chem Soc 91(10):1731–1736

    Article  CAS  Google Scholar 

  • Velázquez K, Agüero J, Vives MC et al (2016) Precocious flowering of juvenile citrus induced by a viral vector based on citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotech J. https://doi.org/10.1111/pbi.12555

    Article  Google Scholar 

  • Vidoy-Mercado I, Imbroda-Solano I, Barceló-Muñoz A et al (2012) Differential in vitro behavior of the Spanish olive (Olea europaea L.) cultivars ‘Arbequina’ and ‘Picual’. Acta Hort 949:27–30

    Article  Google Scholar 

  • Viruega JR, Roca LF, Moral J, Trapero A (2011) Factors affecting infection and disease development on olive leaves inoculated with Fusicladium oleagineum. Plant Dis 95(9):1099–1108. https://doi.org/10.1094/PDIS-11-10-0795

    Article  Google Scholar 

  • Wilhelm S, Taylor JB (1965) Control of verticillium wilt of olive through natural recovery and resistance. Phytopath 55(3):310–316

    Google Scholar 

  • Wu S, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47(1):26–35. https://doi.org/doi.org/10.1139/g03-091

  • Wu SB, Collins G, Sedgley M (2002) Sexual compatibility within and between olive cultivars. J Hort Sci Biotech 77(6):665–673. https://doi.org/10.1080/14620316.2002.11511554

    Article  Google Scholar 

  • Xavier CJ (2015) Resistencia y control químico en la Antracnosis del olivo causada por Colletotrichum spp. PhD Thesis, ETSIAM, Universidad de Córdoba

    Google Scholar 

  • Young JM, Wilkie JP, Fletcher MJ et al (2004) Relative tolerance of nine olive cultivars to Pseudomonas savastanoi causing bacterial knot disease. Phytopathol Mediterr 43(3):395–402

    Google Scholar 

  • Zeinanloo A, Shahsavari A, Mohammadi A, Naghavi MR (2009) Variance component and heritability of some fruit characters in olive (Olea europaea L.). Sci Hort 123(1):68–72

    Article  Google Scholar 

  • Zouari I, Mezghani A, Labidi F (2017) Flowering and heat requirements of four olive cultivars grown in the south of Tunisia. Acta Hort 1160:231–236. https://doi.org/10.17660/ActaHortic.2017.1160.34

    Article  Google Scholar 

Download references

Acknowledgments

We dedicated this review to the collective effort of all researchers working on olive genetic resources and breeding in different Andalusia institutions since the establishment of the Olive Work Germplasm Bank of Córdoba in 1970, a landmark on olive breeding. We also acknowledge Isabel Trujillo for critical reading of the Section on Genetic Resources and to the graduate students Diego Cabello, Hristofor Miho, Pablo Morello and Pedro Valverde for their photographs and support in preparing the manuscript. Authors also recognize the plant breeding group of IFAPA-Alameda del Obispo, the biotechnology groups at IHSM (UMA-CSIC), Plant Biology Department, Malaga University, and IFAPA-Churriana, for their contributions to part of the research reviewed. Finally, we acknowledge the Spanish funding research agencies for their economic support for more than 40 years. Project P11-AGR-7992 is currently supporting part of the research indicated in Sect. 14.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rallo .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Research institutes and online resources

Country

Institution

Specialization and research activities

Contact information and website

Albaniaa

Centre of Agricultural Technology Transfer. Centre of Agricultural Technology Transfer Shamogjin, Komuna Novosele, Vlorë.

Phone.: 00355 33 404144/145

Fax: 00355 33 404144/145

Genetic resources

Ms. Aulona Veizi

aulona10@gmail.com

qttbvlore@yahoo.com

Algeriaa

ITAF. Tessala El Merdja - Birtouta -Alger.

Phone: +213 023 58 38 60/61/66

Fax: +213 023 58 38 64/65

Genetic resources

M. Mahmoud Mendil

mbmendil@gmail.com

Itafv.dg@gmail.com

webmaster@itafv.dz

Argentina

Laboratory of Genetic and Health Quality / Faculty of Agricultural Sciences/UNC. Faculty of Agricultural Sciences National University of Cuyo. Almirante Brown 500.

Chacras de Coria - Luján de Cuyo.

CPA M5528AHB - Mendoza - Argentina.

Phone: (+54 261) 413-5010

Genetic resources Breeding

Genomics

L.E. Torres

itorres@agro.unc.edu.ar http://www.fca.uncu.edu.ar/

Argentina

IBAM/ CONICET/ INTA. Faculty of Agricultural Sciences National University of Cuyo. Almirante Brown 500.

Chacras de Coria - Luján de Cuyo.

CPA M5528AHB - Mendoza - Argentina.

Phone: (+54 261) 413-5010

Genetic resources Breeding

Abiotic stresses

Biotic stresses.

Oil quality

Genomics

R. W. Masuelli

masuelli@fca.uncu.edu.ar https://inta.gob.ar/mendoza

Argentinaa

EEA/CONICET/ INTA. Agricultural Experiment Station San Juan, Calle 11 y Vidart

(5427) Villa Aberastain San Juan.

Phone: (0264) 492 1079, (0264) 492 1191

Genetic resources

Abiotic stresses

Dra. Mariela Torres

mtorres@sanjuan.inta.gov.ar

https://inta.gob.ar

Australia

WWAI/ NSW DPI. Wagga Wagga Agr Inst, EH Graham Ctr Agr Innovat, Wagga Wagga, NSW 2650, Australia.

Phone: (02) 6938 1999

International: +61 2 6938 1999

Fax: (02) 6938 1809

Genetic resources

www.dpi.nsw.gov.au

Australia

UNE. Univ New England, Sch Environm & Rural Sci, Armidale, NSW, 2351

Phone: +61 2 6773 2323

Fax: +61 2 6773 2769

Genetic resources

Breeding

msedgle2@une.edu.au

ers@une.edu.au

Belgium

Ghent University. Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium

Phone. +32 9 331 38 00

Fax +32 9 331 38 09

Genomics

marc.vanmontagu@ugent.be

Croatia

Faculty of Agriculture/ University of Zagreb. University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia,

Phone: +385 (0)1 2393 777

Fax: +385 (0)1 2315 300

Genetic resources Breeding Genomics

Z. Satovic

zsatovic@agr.hr http://www.agr.unizg.hr/en

Croatiaa

Institute for Adriatic Crops and Karst Reclamation. Inst Adriat Crops & Karst Reclamat, Put Duilova 11, Split 21000, Croatia.

Phone: +385.21.43.44.44

Fax: +385.21.31.65.84

Genetic resources

Biotic stresses

Mr. Slavko Perica

Slavko.Perica@krs.hr

info@krs.hr

Cyprusa

Agricultural Research Institute // Officer Olive Technology Laboratory. Agricultural Research Institute.

P.O.Box 22016, 1516 Nicosia, Cyprus.

Phone: ++357 22 403100

Fax: ++357 22 316770

Genetic resources

Ms. Dora Chimonidou

dari@arinet.ari.gov.cy

info@ari.gov.cy

France

AGAP/INRA/ Montpellier SupAgro. Montpellier SupAgro, 2 place Pierre Viala, 34060 MONTPELLIER Cedex 02.

Phone: +33 (0)4 99 61 22 00

Fax: +33 (0)4 99 61 29 00

Genetic resources Breeding

L. Essalouh

laila.essalouh@supagro.inra.fr

https://www.supagro.fr

Francea

UMR-AGAP. Avenue Agropolis, 34398 Montpellier Cedex 5, France.

Phone: +33 4 67 61 58 00

Genetic resources Breeding

Oil Quality

Genomics

B. Khadari

khadari@supagro.fr

https://umr-agap.cirad.fr

France

Université de Toulouse III/

EDB - UMR 5174.

118, route de Narbonne Bât. 4R131062 TOULOUSE cedex 9

Phone (+33) 05 61 55 73 84

Fax: (+33) 05 61 55 73 27

Evolution

G. Besnard

guillaume.besnard@univ-tlse.fr

http://www.edb.ups-tlse.fr/

Greece

Laboratory of Pomology/ Department of Crop Science/ Agricultural University of Athens. Agricultural University of Athens. Iera Odos 75, Athina 118 55, Greece.

Phone.: +30 21 0529 4900

Fax. +30210-5294081.

Genetic resources Breeding

M. Hagidimitriou

marianna@aua.gr

http://www2.aua.gr

Greece

Institute of Viticulture, Floriculture and Vegetable Crops (I.V.F.V.H)/ NAGREF. Institute of Viticulture, Floriculture and Vegetable Corps of Herakleion // I.V.F.V.H // PO Box 2229 // 71003 Herakleion

Phone: 2810 302 300// 245 851, 240 986.

Fax 2810 245 873

Genetic resources Breeding Abiotic stresses

Biotic Stresses

Oil Quality

A.G. Doulis

grandreas.doulis@nagref-her.gr

http://www.nagref-her

Greecea

Olive Cultivation and Post Harvest Physiology Laboratory/ Institute for Olive Tree and Subtropical plants of Chania/NAGREF. Institute for Olive Tree and Subtropical plants of ChaniaLeof. Soudas 131, Chania 731 34, Greece.

Phone:+30 2821 083472

Genetic resources Breeding

Abiotic stresses

Biotic Stresses

Oil Quality

Dr. G.C. Koubouris

koubouris@nagref-cha.gr

Info@nagref-her.gr

Greece

Aristotle Univ. Thessaloniki. Aristotle Univ Thessaloniki,

Dept Hort, Lab Biol Hort

Plants, Thessaloniki 54124,

Hellas, Greece

Biotic Stresses

Breeding Oil Quality

Maria Tsimidou tsimidou@chem.auth.gr

info@agro.auth.gr

Iran

National Institute of Genetic Engineering and Biotechnology . Shahrak-e Pajoohesh, km 15, Tehran - Karaj Highway, Tehran, Iran

P.O. Box: 14965/161.

Phone: +98 21 44787301-9.

Fax: +98 21 44787399

Genetic Resources Breeding Genomics

M. Hosseini-Mazinani

hosseini@nigeb.ac.ir

nigeb_manager@nigeb.ac.ir

Iran

Horticulture Department/Gorgan University of Agricultural Sciences. Gorgan University of Agricultural Sciences and Natural Resources. Gorgan, 49138-15739, Iran.

Phone: +98-171-2220320.

Fax: + 98-171-2220640

Genetic Resources Breeding Genomics

M. Sharifani

mmsharif2@gmail.com

International@gau.ac.ir

Iran

SPII/HD. SPII, Hort Dept, Mahdasht Rd,POB 31359-33181, Karaj, Iran

Breeding

A. Zeinanloo

info@abrii.ac.ir

Israel

The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of

Jerusalem. Hebrew Univ Jerusalem, Fac Agr, Inst Plant Sci, IL-76100 Rehovot, Israel.

P.O Box 12, Rehovot 76100

Genetic resources

Breeding

Abiotic stresses

Biotic stresses.

Oil Quality

Genomics

A. Samach

alon.samach@mail.huji.ac.il

http://departments.agri.huji.ac.il

Israela

ARO/ Volcani Centera. Agricultural Research Organization - the Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel

Phone: +972-3-9683226

Fax: +972-3-9665327

Genetic Resources

Dr. Giora Ben Ari

giora@agri.huji.ac.il

http://www.agri.gov.il

Italy

IVALSA. National Research Council of Italy, Trees and Timber Institute Follonica (Grosseto)

via Aurelia, 49 58022 - Follonica (GR)

Phone. +39 056 652356

Genetic Resources Breeding Genomics

C. Cantini

cantini@ivalsa.cnr.it

http://www.ivalsa.cnr.it

Italy

CNR/Institute of plant genetics. Institute of plant genetics. Via Madonna Alta, 130-06128 Perugia (PG) - Umbria

Phone: +39 0755014862

Fax: 0755014869

Genetic resources

Breeding

Genomics

L. Baldoni

luciana.baldoni@ibbr.cnr.it

http://www.ibbr.cnr.it

Italy

DEMETRA/ University of Palermo. University of Palermo. Piazza Marina, 61// 90133 - PALERMO.

Phone: +39 091 238 93011

Genetic Resources

Abiotic stresses

Biotic stresses

T. Caruso

f tiziano.caruso@unipa.it

http://www.unipa.it

Italy

Management Department of Agricultural and Forestry Systems/ University of the Mediterranean Studies of Reggio Calabria. Mediterranea University of Reggio Calabria. Salita Melissari 89124 Reggio Calabria.

Tel.: +39 0965 169 1207

Fax: +39 0965 332201

Genetic Resources Breeding

R. Mafrica

rocco.mafrica@unirc.it

http://www.unirc.it

Italy

UNIFI/DISPAA.

Universita degli studi fii Firenze. Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente Piazzale delle Cascine, 18 - 50144 Firenze

Phone: +39 055275-5700

Genetic resources

Breeding

Abiotic stresses

http://dispaa.unifi.it

Italy

UNITU. Universita della Tuscia, DAFNE,

Via San Camillo de Lellis Snc, I-01100

Phone +39 0761357581/554;

Fax +39 0761357558/434

Biotechnology

Genomics

Eddo Rugini rugini@unitus.it

dafne@pec.unitus.it

Italy

CNR/ IVALSA. Sesto Fiorentino (Firenze)

via Madonna del Piano, 10

50019 - Sesto Fiorentino (FI)

Phone: +39 055 52251

Genetic Resources

Genomics

M. Centrito centrito@ivalsa.cnr.it

info@ivalsa.cnr.it

Italy

UNIBA/DISAAT. Universita di Bari, Dipartimento di Scienze Agro Ambiental e Territoriali (Di.S.A.A.T.)

Amendola 165-A, I-70126 Bari, Italy

Genetic resources

Biotic stresses

Franco Nigro

franco.nigro@uniba.it

info@agr.uniba.it

Italy

ENTECRA OLI. CRA OLI, I-06049 Spoleto, PG, Italy. Centro di ricerca per l’olivicoltura e l’industria olearia (Rende) Via Nursina 2 06049 - SPOLETO.

Phonel: +39 0743-49743

Fax: +39 0743-43634

Genetic resources

Biotic stresses

Adolfo Rosati

rosati@entecra.it

info@entecra.it

Italy

UNIPG/DSAAA. Univ Perugia, Dipartimento Sci Agr Alimentari & Ambientali, Via Borgo 20 Giugno 74, I-06121 Perugia, Italy

Oil quality

Maurizio Servili

maurizio.servili@unipg.iti

nfo@unipg.it

Italya

CRA-OLI Research center for olive growing and oil industry. Centro di ricerca per l’olivicoltura e l’industria olearia – Sede Scientifica di Città S.Angelo (OLI.PE)

Viale Petruzzi 75

65013 - CITTA’ SANT’ANGELO

Genetic resources Breeding Abiotic stresses

Biotic stresses Oil quality

Enzo Perri

enzo.perri@crea.gov.it

http://sito.entecra.it

Jordana

NCARE. National Center for Agricultural Research and Extension PO Box 639, Baq’a 19381, Jordania

Phone: +962 (6) 4725071

Fax: +962 (6) 4726099

Genetic Resources Breeding

Abiotic stresses

Biotic stresses Oil quality

Dr. Salam Ayoub

salamayoub@hotmail.com

http://www.ncare.gov.jo/

Lebanon

Lebanese University/ Faculty of Agricultural Sciences. Faculty of Agricultural Sciences.

PO Box 90775, Horst Tabet, Beirut - Lebanon

Phone: 484130/01 484131/01 484132/01

Fax: 510870/01 510867/01

Genetic resources Breeding Genomics

L. Chalak

lamis.chalak@gmail.com https://www.ul.edu.lb

Lebanona

LARI. Lebanese Agr Res Inst, Lab Olive Oil , Tal Amara, Bekaa, Lebanon

Genetic resources

Oil quality

Milad El Riachy

mraichy@lari.gov.lb

info@lari.gov.lb

Montenegroa

Biotechnical Faculty/Centre For Subtropical Cultures. Biotechnical Faculty. Centre for Subtropical Cultures Bar- University of Montenegro. Ul. Bjelisi bb 85000 Bar// Montenegro

Phone: (382) 69516165

Breeding

Genomics

B. Lazovic

biljanal@t-com.me

http://www.ucg.ac.me

Moroccoa

INRA/ URAP. Centre Régional de la Recherche Agronomique de Marrakech

Unité de Recherche sur l’Amélioration des Plantes et de la qualité

B.P. 533 Menara MARRAKECH Maroc

Phone: +212 524447882/ +212 524435175/ +212 524432627

Fax: +212 524446380

Genetic Resources

Breeding

Sikaoui Lhassane

sikaouilhassane@yahoo.fr

http://www.inra.org.ma

Portugala

INIAV. UEI de Biotecnologia e Recursos Geneticos. Polo de Elvas

Estrada de Gil Vaz, Apartado 67351-901 Elvas – Portugal

Phone: (+ 351) 268 637 740

Genetic resources

Breeding

Oil quality

Table olives quality

Genomics

António M Cordeiro

antonio.cordeiro@iniav.pt

polo.elvas@iniav.pt

Sloveniaa

Experimental center for olive growing . Agriculture and Forestry Institute Nova Gorica.Ulica 15. maja 17, 6000 Koper

Tel: ++386 (0)5 631 32 32/ ++386 (0)41 815 302

Genetic resources

Ms. Vesel Viljanka

viljanka.vesel@siol.net

www.kmetijskizavod-ng.si

Spaina

IFAPA Centro Alameda del Obispo. Centro Alameda del Obispo Avda. Menéndez Pidal s/n 14004- Córdoba

Phone. +34 957016000

Genetic resources

Breeding

Abiotic stresses

Biotic stresses.

Oil quality

Genomics

Raul De la Rosa

raul.rosa@juntadeandalucia.es

cordoba.ifapa@juntadeandalucia.es

Spain

IMIDRA. Finca El Encin, Autovía del Noreste A-2, Km. 38.200, 28805// Alcalá de Henares, Madrid

Phone: +34 918 87 94 00

Genetic resources

Breeding

Oil quality

Genomics

B. E. Sastre

blanca.esther.sastre@madrid.org

www.madrid.org/imidra/

Spain

Instituto de la Grasa/ CSIC. Instituto de la Grasa, CSIC. Ctra. de Utrera, km. 1. Campus Universitario Pablo de Olavide - Edificio 46. 41013 - SEVILLA (España)

Phone:(+34) 95 461 1550

Fax:(+34) 95 461 6790

Genetic resources Breeding

Oil quality

Table olives quality

Genomics

J. M. Martínez-Rivas

mrivas@cica.es

www.ig.csic.es

Spain

Plant Physiology/ Faculty of Science/ University of Extremadura. University of Extremadura. Avda. de Elvas, s/n. 06006 Badajoz

Phone:+34 924 289 300

Fax.: +34 924 272 983

Genetic resources Abiotic stresses

Biotic stresses.

Oil quality

Genomics

M. C. Gomez-Jimenez

mcgomez@unex.es

https://www.unex.es

Spain

IAS-CSIC. Instituto de Agricultura Sostenible

Avenida Menéndez Pidal s/n

Campus Alameda del Obispo

14004 Córdoba (España)

Phone: +34 957 49 92 00

Fax:+34 957 49 92 52

Genetic resources Breeding Abiotic stresses

Biotic stresses.

H. F. Rapoport

hrapoport@ias.csic.es

http://www.ias.csic.es/

Spaina

Department of Agronomy/ University of Córdobaa. Universidad de Córdoba

Departamento Agronomía

Campus Univ. de Rabanales

Ctra. Madrid-Cádiz Km. 396

14071-Córdoba

Phone +34 957218433/ 34/ 35

Fax +34 957218438

Genetic resources Breeding

Abiotic stresses

Biotic stresses.

Oil quality

Genomics

Diego Barranco

ag1banad@uco.es

infoetsiam@uco.es

Spain

IRTA Mas de Bover. Instituto de Investigación y Tecnología Agroalimentarias. Ctra. de Reus El Morell Km 4,5

Phone: 977 32 84 24

Fax: 977 34 40 55

Genetic resources Breeding

Abiotic stresses

Biotic stresses.

Oil quality

Genomics

Agusti Romero

agusti.romero@irta.cat

http://www.irta.cat

Spain

CSIC/EEZ. Plant Reproductive Biology Laboratory, Estacion Experimental del Zaidin (CSIC), Profesor Albareda 1, 18008 Granada, Spain.

Phone +34 958572757

Fax +34958572753

Abiotic stresses

Genomics

Juan D. Alche

juandedios.alche@eez.csic.es

info @csic.eez.es

Spain

US/ETSIA. Departamento Agroforestal. ETSIA. Universidad de Sevilla. Ctra. Utrera km 1. 41013 Sevilla.

Phone +34 954486455

Fax +34 954486436

Breeding

Quality table olives

Pilar Rallo

prallo@us.es

agroforestal@us.es

Spain

CNAG CRG. Barcelona Inst Sci & Technol, Ctr Genom Regulat, CNAG CRG, Baldiri i Reixac 4, Barcelona 08028, Spain

Phone +34 93 316 01 00

Fax +34 93 316 00 99

Genomics

Toni Gabaldon toni.gabaldon@crg.eu.

info@crg.esi

Spain

UJA/DBE. Univ Jaen, Dept Biol Expt, Campus Lagunillas S-N, Edif B-3, Jaen 23071, Spain.

Phone:+34 953 212527

Genomics

Oil Quality

Francisco Luque

fjluque@ujaen.es

info@ujaen.es

Spain

CSIC/IRNAS. CSIC, IRNAS, Irrigat & Crop Ecophysiol Grp, Ave Reina Mercedes 10, Seville 41012, Spain.

Phone: +34 95 462 47 11

Abiotic Stresses

Enrique Fernandez Luque

jeferse@irnase.csic.es

www.irnas.csic.es

Spain

IHSM/UMA-CSIC,

Inst Hortofruticultura Subtrop & Mediterranea, Univ Malaga-CSIC, Dept. Biol Vegetal, Fac Ciencias, E-29071 Malaga, Spain.

Phone: +34 952131947

Biotechnology

F. Pliego,

ferpliego@uma.es

Tunisia

IRESA. Univ Sousse, IRESA, High Agron Inst, B.P. n° 47 -4042 Chott Meriem SousseTunisie

Phone: (+216) 73 327 544/ (+216) 73 327.592.

Fax: (+216) 73 327

Genetic resources

 Ibtisissem Laribi

ibtissem.laaribi@yahoo.fr

isa.chott@iresa.agrinet.tn

Tunisiaa

Institut de l’Olivier Sfax, Route de l’Aéroport, B.P. 1087 3000 Sfax

Tél: (+216) 74 241 240/ 74 241 589

Fax: (+216) 74 241 033

Genetic Resources

Breeding

Biotic Stresses

Monji Msallem

msallemonji@yahoo.fr

http://www.iosfax.agrinet.tn/

Turkey

Department of Bioengineering/Ege University. Ege University Faculty of Engineering Department of Bioengineering. Erzene Quarter, Ege Unv. No:180, 35040 Bornova/İzmir

Phine: 0 232 311 58 11

Fax: 0 232 311 58 80

Genetic Resources and Breeding Genomics

B. Tanyolaç

bahattin.tanyolac@ege.edu.tr

http://biyomuhendislik.ege.edu.tr

info@ege.edu.tr

Turkey

Bornova Olive Research Station. Olive Culture Research Station Üniversite Cd. No: 43 35100 Bornova/ İzmir

Phone: +90 (232) 462-7073

Genetic Resources

Dr. Unal Kaya

unal.kaya@gthb.gov.tr

posta@zae.gov.tr

Turkeya

GFAR. Olive Research Institute - İzmir

Universite Cd. No:43 35100 BORNOVA IZMIR

Phone: +90 232 462 70 73

Fax: +90 232 435 70 42

Genetic Resources

Melek Gurbuz

melekgurbuz11@gmail.com

izmirzae@tarim.gov.tr

Uruguay

INIA/ National Agricultural Research Institute. National Agricultural Research Institute. Andes 1365 - piso 12 CP 11100 Montevideo, Uruguay

Phone: + 598 2902 0550

Fax: + 598 2902 3666

Genetic Resources and Breeding Abiotic stresses

Biotic stresses

P. Conde

pconde@inia.org.uy

inia@inia.org.uy

USA

National Clonal Germplasm Repository/USDA. Nat’l Clonal Germplasm Rep - Tree Fruit & Nut Crops & Grapes. Davis, CA One Shields Ave, UC Davis Davis, CA 95616

Phone: (530)752-7009

Fax: 530-752-5974

Genetic Resources Breeding Genomics

J. E. Preece

John.Preece@ars.usda.gov

https://www.ars.usda.gov

  1. aIOC Network Germplasm Bank

Appendix 2

Genetic resources : Main native cultivars

Country

Cultivar

Use

Fruit weight (g)

Oil content

Albania

Kalinjot

Oil, Table

3.5

High

Algeria

Azeradj

Oil, Table

4

Medium

Chemlal de Kabylie

Oil

2

Low

Sigoise

Table, Oil

3

Medium

Argentina

Arauco

Table, Oil

8

Medium

Chile

Azapa

Table, Oil

8

Medium

Croatia

Lastovka

Oil

3

High

Oblica

Table

5

Medium

Cyprus

Ladoelia

Oil

2.5

High

Egypt

AggeiziShami

Table

8

Very low

Touffahi

Table

12

Very low

France

Aglandau

Oil, Table

2.5

Medium

Bouteillan

Oil

5

High

Grosanne

Table, Oil

2.5

Low

Lucques

Table

3

Low

Picholine du Languedoc

Table, Oil

3

Medium

Salonenque

Table, Oil

3

Medium

Tanche

Oil, Table

2.5

High

Greece

Adramitini

Oil

2.5

High

Amigdaloia

Table, Oil

8

Medium

Chalkidikis

Table

8

Medium

Kalamata

Table

3.5

Medium

Konservolia

Table

4

Medium

Koroneiki

Oil

1

Very high

Mastoidis

Oil, Table

2.6

Very high

Megaritiki

Oil

2

High

Valanolia

Oil

2.5

Medium

Iran

Fishomi

Table

 

Medium

Mari

Table, Oil

3.5

High

Roghani

Oil

4

High

Zard

Oil, Table

4.5

Medium

Israel

Barnea

Oil, Table

3

Medium

Nabali

Oil, Table

3

High

Souri

Oil, Table

3

High

Italy

Ascolana

Table

7

Low

Bosana

Oil

3

High

Cellina di Nardo

Oil

2

Low

Coratina

Oil

5

Medium

Frantoio

Oil

3

High

Leccino

Oil

2.5

Medium

Moraiolo

Oil

2

High

OgliarolaBarese

Oil

2

High

Pendolino

Oil

2

Low

Taggiasca

Oil

2

High

Jordan

Nabali Baladi

Table, Oil

3

High

Rasei

Oil

3

Medium

Lebanon

Baladi

Oil, Table

3

High

Souri

Oil, Table

3

High

Libya

Endory

Oil

1

High

Hammudi

Oil

2.2

High

Malta

Bidni

Oil, Table

2

High

Montenegro

Zutica

Oil

3.2

High

Morocco

Picholine Marocaine

Oil, Table

3.5

Medium

Palestine

Nabali

Oil, Table

3.1

High

Souri

Oil, Table

3

High

Perú

Criolla

Table

8

High

Portugal

Cobrançosa

Oil

3

Medium

GalegaVulgar

Oil, Table

2.5

Medium

Slovenia

Buga

Oil

  

Spain

Arbequina

Oil

1.9

High

Arbosana

Oil

2

Medium

Cornicabra

Oil

3

High

Empeltre

Oil

2.7

Medium

Farga

Oil

2.4

Medium

Gordal Sevillana

Table

12.5

Low

Hojiblanca

Oil, Table

4.8

Medium

Lechin de Sevilla

Oil

3

Medium

Manzanilla de Sevilla

Table

4.6

Medium

Picual

Oil

3.2

High

Syria

Doebli

Oil, Table

4.5

High

Sorani

Oil, Table

3

High

Zaity

Oil

2.5

Very high

Kaissy

Table

5

Low

Tunisia

Chemlali Sfax

Oil

1

Very high

Chetoui

Oil, Table

2.5

Medium

Oueslati

Oil, Table

2

High

Turkey

Ayvalik

Oil

3.6

High

Domat

Table

5.3

Medium

Gemlik

Oil, Table

3.7

High

Memecik

Oil, Table

4.8

Medium

USA

Mission

Oil, Table

3

Medium

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rallo, L. et al. (2018). Strategies for Olive (Olea europaea L.) Breeding: Cultivated Genetic Resources and Crossbreeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_14

Download citation

Publish with us

Policies and ethics