Skip to main content

Comparative Physiology

  • Chapter
  • First Online:
Snapshots of Hemodynamics

Abstract

To compare parameters in different mammals we make use of the so-called allometric equation: PA = PA0 Me, with PA the parameter of interest, PA0 a reference value, M body mass, and e the exponent. The R p C-time of aortic pressure decay in diastole, and heart period, T period , both scale as M1/4, their ratio thus being independent of body mass and thus similar in mammals. Volume parameters such a heart size and Stroke Volume, SV, are proportional to body mass. Since CO equals HR times SV, CO is proportional to M3/4. Basal metabolism is proportional to CO, and thus also proportional to M3/4. The coupling parameters (Chap. 14 and 31) are independent of body mass. The ratio of peripheral resistance and aortic characteristic impedance is also independent of animal size, implying that normalized aortic input impedance is similar in mammals. These mass-independent relations imply that wave shapes of pressure and flow are similar, pressures equal, but CO=CO0M3/4 and Basal Metabolism, BMr=BMr0M3/4, depend on body mass. The quantitative similarity of pressures in mammals suggest that even borderline hypertension is abnormal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt-Nielsen K. Scaling. Why is animal size so important? vol. 57. London/New York: Cambridge Univ Press; 1984.

    Book  Google Scholar 

  2. Kleiber M. Body size and metabolic rate. Physiol Rev. 1947;27:511–41.

    Article  CAS  PubMed  Google Scholar 

  3. Dubois D, Dubois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Int Med. 1961;17:867–71.

    Google Scholar 

  4. Takai S, Shimaguchi S. Are height and weight sufficient for the estimation of human body surface area? Hum Biol. 1986;58:625–38.

    CAS  PubMed  Google Scholar 

  5. White CR, Seymour RS. The role of gravity in the evolution of mammalian blood pressure. Evolution. 2014;68:901–8.

    Article  PubMed  Google Scholar 

  6. White CR, Seymour RS. Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci U S A. 2003;100:4046–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holt JP, Rhode EA, Kines H. Ventricular volumes and body weight in mammals. Am J Phys. 1968;215:704–14.

    CAS  Google Scholar 

  8. Altman PL, Dittmer DE (eds). Biological handbook. Bethesda, Fed Am Soc Exptl Biol. pp. 278, 320, 336–341; 1971.

    Google Scholar 

  9. Westerhof N, Elzinga G. Normalized input impedance and arterial decay time over heart period are independent of animal size. Am J Phys. 1991;261:R126–33.

    CAS  Google Scholar 

  10. Smulyan H, Marchais SJ, Pannier B, Guerin AP, Safar ME, London GM. Influence of body height on pulsatile hemodynamic data. J Am Coll Cardiol. 1998;31:1103–9.

    Article  CAS  Google Scholar 

  11. Savage VM, Deeds EJ, Fontana W. Sizing up allometric scaling theory. PLoS Comput Biol. 2008;4(9):e1000171.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kumar NT, Liestøl K, Løberg EM, Reims HM, Mæhlen J. Postmortem heart weight: relation to body size and effects of cardiovascular disease and cancer. Cardiovasc Pathol. 2014;23:5–11.

    Article  PubMed  Google Scholar 

  13. Elzinga G, Westerhof N. Matching between ventricle and arterial load. Circ Res. 1991;68:1495–500.

    Article  CAS  PubMed  Google Scholar 

  14. Senzaki H, Chen C-H, Kass DA. Single beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation. 1996;94:2497–506.

    Article  CAS  PubMed  Google Scholar 

  15. West GB, Woodruff WH, Brown JH. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. PNAS. 2002;99:2473–8.

    Article  PubMed  Google Scholar 

  16. Barth E, Stämler G, Speiser B, Schaper J. Ultrastructural quantification of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol. 1992;24:669–81.

    Article  CAS  PubMed  Google Scholar 

  17. Dobson GP. On being the right size: heart design, mitochondrial efficiency and lifespan potential. Clin Exp Pharmacol Physiol. 2003;30:590–7.

    Article  CAS  PubMed  Google Scholar 

  18. Benetos A, Safar M, Rudnichi A, Smulyan H, Richard JL, Ducimetieere P, et al. Pulse pressure: a predictor of long-term cardiovascular mortality in a French male population. Hypertension. 1997;30:1410–5.

    Article  CAS  PubMed  Google Scholar 

  19. Mitchell GF, Moye LA, Braunwald E, Rouleau JL, Bernstein V, Geltman EM, et al. Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function. Circulation. 1997;96:4254–60.

    Article  CAS  PubMed  Google Scholar 

  20. Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet. 1997;3502:953–5.

    Article  Google Scholar 

  21. Millar JS, Zammuto RM. Life histories of mammals: an analysis of life tables. Ecology. 1983;64:631–5.

    Article  Google Scholar 

  22. Levine HJ. Rest heart rate and life expectancy. J Am Coll Cardiol. 1997;30:1104–6.

    Article  CAS  PubMed  Google Scholar 

  23. Gent S, Kleinbongard P, Dammann P, Neuhäuser M, Heusch G. Heart rate reduction and longevity in mice. Basic Res Cardiol. 2015;110:1–9.

    Article  CAS  Google Scholar 

  24. Samaras TT, Elrick H, Storms LH. Is height related to longevity? Life Sci. 2003;72:1781–802. Review.

    Article  CAS  PubMed  Google Scholar 

  25. Reeve JC, Abhayaratna WP, Davies JE, Sharman JE. Central hemodynamics could explain the inverse association between height and cardiovascular mortality. Am J Hypertens. 2014;27:392–400.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westerhof, N., Stergiopulos, N., Noble, M.I.M., Westerhof, B.E. (2019). Comparative Physiology. In: Snapshots of Hemodynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-91932-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91932-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91931-7

  • Online ISBN: 978-3-319-91932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics