Skip to main content

Mechanotransduction and Vascular Remodeling

  • Chapter
  • First Online:
Snapshots of Hemodynamics

Abstract

Blood vessels respond to pressure and flow, more exactly to hoop stress and wall shear. In the short term, a pressure increase results in a smooth muscle contraction and thus in a diameter decrease, so that hoop stress normalizes (myogenic response, see Chap. 19). A flow increase implies an increase in wall shear stress, which is sensed by the endothelium (glycokalix). The endothelium liberates smooth muscle dilators (e.g., NO), and an increase in diameter results which reduces the wall shear stress: Flow Mediated Dilation. In the long term, a sustained high blood pressure implies a high wall hoop stress leading to wall thickening (hypertrophy), and normalization of hoop stress. Increased flow gives increased wall shear stress and leads to increase in vessel diameter. In general, vascular remodeling leads, within limits, to a restoration to control levels of hoop stress and wall shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Humphrey JD, Eberth JF, Dye WW, Gleason RL. Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech. 2009;42:1–8.

    Article  CAS  PubMed  Google Scholar 

  2. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;27.;288(5789):373–6.

    Article  Google Scholar 

  3. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;27:524–6.

    Article  Google Scholar 

  4. Kelly RF, Snow HM. Characteristics of the response of the iliac artery to wall shear stress in the anaesthetised pig. J Physiol. 2007;582:731–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tarbell JM, Simon SI, Curry FR. Mechanosensing at the vascular interface. Annu Rev Biomed Eng. 2014;16:505–32. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49:2379–793.

    Article  CAS  Google Scholar 

  7. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16–26.

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto T, Hayashi K. Stress and strain in hypertensive and normotensive rat aorta considering residual strain. J Biomech Eng. 1996;118:62–73.

    Article  CAS  PubMed  Google Scholar 

  9. Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in canine carotid artery. Am J Phys. 1980;239:14–29.

    Google Scholar 

  10. Langille BL, O'Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 1986;231:405–7.

    Article  CAS  PubMed  Google Scholar 

  11. Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol. 1996;16:1256–62.

    Article  CAS  PubMed  Google Scholar 

  12. Van Loon P. Length-force and volume-pressure relationships of arteries. Biorheology. 1977;14:181–201.

    Article  PubMed  Google Scholar 

  13. Lehman RM, Owens GK, Kassell NF, Hongo K. Mechanism of enlargement of major cerebral collateral arteries in rabbits. Stroke. 1991;22:499–504.

    Article  CAS  PubMed  Google Scholar 

  14. Sho E, Nanjo H, Sho M, Kobayashi M, Komatsu M, Kawamura K, et al. Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress. J Vasc Surg. 2004;39:601–12.

    Article  PubMed  Google Scholar 

  15. Jackson ZS, Gotlieb AI, Langille BL. Wall tissue remodeling regulates longitudinal tension in arteries. Circ Res. 2002;90:918–25.

    Article  CAS  PubMed  Google Scholar 

  16. Eberth JF, Gresham VC, Reddy AK, Popovic N, Wilson E, Humphrey JD. Importance of pulsatility in hypertensive carotid artery growth and remodeling. J Hypertens. 2009;27:2010–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fung YC, Liu SQ. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ Res. 1989;65:1340–9.

    Article  CAS  PubMed  Google Scholar 

  18. Mulvany MJ. Vascular remodelling of resistance vessels: can we define this? Cardiovasc Res. 1999;41:9–13.

    Article  CAS  PubMed  Google Scholar 

  19. Laurent S, Girerd X, Mourad J-J, Lacolley P, Beck L, Boutouyrie P, et al. Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension. Arterioscler Thromb. 1994;14:1223–31.

    Article  CAS  PubMed  Google Scholar 

  20. Lambert J, Aarsen M, Donker AJM, Stehouwer CDA. Endothelium-dependent and -independent vasodilation of large arteries in Normoalbuminuric insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16:705–11.

    Article  CAS  PubMed  Google Scholar 

  21. Lavi T, Karasik A, Koren-Morag N, Kanety H, Feinberg MS, Shechter M. The acute effect of various glycemic index dietary carbohydrates on endothelial function in nondiabetic overweight and obese subjects. J Am Coll Cardiol. 2009;53:2283–7.

    Article  CAS  PubMed  Google Scholar 

  22. Caro C, Fitzgerald J, Schroeter R. Arterial wall shear and distribution of early atheroma in man. Nature. 1969;223:1159–60.

    Article  CAS  PubMed  Google Scholar 

  23. Helderman F, Segers D, de Crom R, Hierck BP, Poelmann RE, Evans PC, et al. Effect of shear stress on vascular inflammation and plaque development. Curr Opin Lipidol. 2007;18:527–33. Review

    Article  CAS  PubMed  Google Scholar 

  24. Kelly R, Ruane-O'Hara T, Noble MIM, Drake-Holland AJ, Snow HM. Effect of hyperglycaemia on endothelial dependent dilatation in the iliac artery of the anaesthetized pig. J Physiol. 2006;573:133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rachev A, Manoach E, Berry J, Moore JE Jr. A model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J Theor Biol. 2000;206:429–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westerhof, N., Stergiopulos, N., Noble, M.I.M., Westerhof, B.E. (2019). Mechanotransduction and Vascular Remodeling. In: Snapshots of Hemodynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-91932-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91932-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91931-7

  • Online ISBN: 978-3-319-91932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics