Skip to main content

Distributed Models and Tube Models

  • Chapter
  • First Online:
Snapshots of Hemodynamics

Abstract

The distributed, or 1-D models of the systemic arterial system account for the morphology, oscillatory flow theory, and viscoelastic properties of the arterial wall. Pressures and flow wave shapes and wave travel compare favorably with in vivo data. The 3-D models account for flow profiles in the vessels. Patient-specific models have recently been developed. Distributed models allow the study of wave travel, reflections, the study of wave reflections at different locations in the arterial tree. Simpler models such as single tubes, or two tubes in parallel are discussed in the text. They are limited in their description of wave travel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westerhof N, Bosman F, De Vries CJ, Noordergraaf A. Analog studies of the human systemic arterial tree. J Biomech. 1969;2:121–43.

    Article  CAS  Google Scholar 

  2. Alastruey J. On the mechanics underlying the reservoir-excess separation in systemic arteries and their implications for pulse wave analysis. Cardiovasc Eng. 2010;10:176–89.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Phys. 2011;301:H1173–82.

    CAS  Google Scholar 

  4. Olufsen MS. Structured tree outflow condition for blood flow in larger systemic arteries. Am J Phys. 1999;276:H257–68.

    CAS  Google Scholar 

  5. Guan D, Liang F, Gremaud PA. Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model. J Biomech. 2016;49:1583–92.

    Article  PubMed  Google Scholar 

  6. Reymond P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys. 2013;35:784–91.

    Article  PubMed  Google Scholar 

  7. Xiao N, Alastruey J, Alberto FC. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int J Numer Method Biomed Eng. 2014;30:204–31.

    Article  PubMed  Google Scholar 

  8. Westerhof N, Noordergraaf A. Arterial viscoelasticity: a generalized model. Effect on input impedance and wave travel in the systematic tree. J Biomech. 1970;3:357–79.

    Article  CAS  PubMed  Google Scholar 

  9. O’Rourke MF, Avolio AP. Pulsatile flow and pressure in human systemic arteries: studies in man and in a multi-branched model of the human systemic arterial tree. Circ Res. 1980;46:363–72.

    Article  PubMed  Google Scholar 

  10. Stergiopulos N, Young DF, Rogge TR. Computer simulation of arterial flow with applications to arterial and aortic stenosis. J Biomech. 1992;25:1477–88.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor MG. The input impedance of an assembly of randomly branching elastic tubes. Biophys J. 1966;6:29–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor MG. Wave transmission through an assembly of randomly branching elastic tubes. Biophys J. 1966;6:697–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Remington JW, Wood EH. Formation of peripheral pulse contour in man. J Appl Physiol. 1956;9:433–42.

    Article  CAS  PubMed  Google Scholar 

  14. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980;62:105–1116.

    Article  CAS  PubMed  Google Scholar 

  15. Sipkema P, Westerhof N. Effective length of the arterial system. Ann Biomed Eng. 1975;3:296–307.

    Article  CAS  PubMed  Google Scholar 

  16. Alastruey J, Hunt AA, Weinberg PD. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections. Int J Numer Method Biomed Eng. 2014;30:249–79.

    Article  PubMed  Google Scholar 

  17. Hamilton WF, Dow P. An experimental study of the standing waves in the pulse propagated through the aorta. Am J Phys. 1939;125:48–59.

    Google Scholar 

  18. Westerhof BE, van den Wijngaard JP, Murgo JP, Westerhof N. Location of a reflection site is elusive: consequences for the calculation of aortic pulse wave velocity. Hypertension. 2008;52:478–83.

    Article  CAS  PubMed  Google Scholar 

  19. Davies JE, Alastruey J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, et al. Attenuation of wave reflection by wave entrapment creates a "horizon effect" in the human aorta. Hypertension. 2012;60:778–85.

    Article  CAS  PubMed  Google Scholar 

  20. Tyberg JV, Bouwmeester JC, Parker KH, Shrive NG, Wang JJ. The case for the reservoir-wave approach. Int J Cardiol. 2014;172:299–306.

    Article  PubMed  Google Scholar 

  21. O’Rourke MF. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol. 1967;23:139–49.

    Article  PubMed  Google Scholar 

  22. O’Rourke MF. Vascular impedance in studies of arterial and cardiac function. Physiol Rev. 1982;62:570–623. Review

    Article  PubMed  Google Scholar 

  23. Campbell KB, Burattini R, Bell DL, Kirkpatrick RD, Knowlen GG. Time-domain formulation of asymmetric T-tube model of the arterial system. Am J Phys. 1990;258:H1761–74.

    CAS  Google Scholar 

  24. Burattini R, Knowlen GG, Campbell KN. Two arterial reflecting sites may appear as one to the heart. Circ Res. 1991;68:85–99.

    Article  CAS  PubMed  Google Scholar 

  25. Westerhof BE, Westerhof N. Magnitude and return time of the reflected wave: the effects of large artery stiffness and aortic geometry. J Hypertens. 2012;30:932–9.

    Article  CAS  PubMed  Google Scholar 

  26. Segers P, Verdonck P. Role of tapering in aortic wave reflection: hydraulic and mathematical model study. J Biomech. 2000;33:299–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westerhof, N., Stergiopulos, N., Noble, M.I.M., Westerhof, B.E. (2019). Distributed Models and Tube Models. In: Snapshots of Hemodynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-91932-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91932-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91931-7

  • Online ISBN: 978-3-319-91932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics