Skip to main content

Wave Travel and Pulse Wave Velocity

  • Chapter
  • First Online:
Snapshots of Hemodynamics

Abstract

Waves generated by the heart travel down the aorta and major conduit arteries. These waves are pressure waves, flow or velocity waves or diameter waves. The ratio of the distance Δx, and the time it takes for the foot of the wave to travel over this distance, Δt, gives the wave speed or pulse wave velocity, PWV=Δx/Δt. The same wave speed applies to pressure, flow and diameter waves, and by using the foot of the waves reflections play a minor role. The wave speed depends on vessel size and the elastic properties of the arterial wall. In the aorta of a healthy subject the wave speed is typically 4–5 m/s. In stiff aortas, having a low compliance the wave speed may be two times higher, implying a four-fold decrease in compliance. The wave speed in peripheral arteries is higher than in central arteries since the wall thickness is higher and the diameters are smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank O. Die Elastizität der Blutgefässe Z Biol. 1920;71:255–72.

    Google Scholar 

  2. Bramwell JC, Hill AV. The velocity of the pulse wave in man. Proc Roy Soc Lond [Biol]. 1922;93:298–306.

    Article  Google Scholar 

  3. Remington JW, Wood EH. Formation of peripheral pulse contour in man. J Appl Physiol. 1956;9:433–42.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor MG. An experimental determination of the propagation of fluid oscillations in a tube with a visco-elastic wall; together with an analysis of the characteristics required in an electrical analogue. Phys Med Biol. 1959;4:63–82.

    Article  CAS  PubMed  Google Scholar 

  5. Fry DL, Casper AG, Mallos AJ. A catheter tip method for measurement of the instantaneous aortic blood velocity. Circ Res. 1956;4:627–32.

    Article  PubMed  Google Scholar 

  6. Hermeling E, Vermeersch SJ, Rietzschel ER, de Buyzere ML, Gillebert TC, van de Laar RJ, et al. The change in arterial stiffness over the cardiac cycle rather than diastolic stiffness is independently associated with left ventricular mass index in healthy middle-aged individuals. J Hypertens. 2012;30:396–402.

    Article  CAS  PubMed  Google Scholar 

  7. Hickson SS, Butlin M, Graves M, Taviani V, Avolio AP, Mceniery CM, et al. The relationship of age with regional aortic stiffness and diameter. JACC Cardiovasc Imaging. 2010;3:1247–55.

    Article  PubMed  Google Scholar 

  8. Davies JE, Whinnett ZI, Francis DP, Willson K, Foale RA, Malik IS, et al. Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am J Phys. 2006;290:H878–85.

    CAS  Google Scholar 

  9. Rolandi MC, De Silva K, Lumley M, Lockie TP, Clapp B, Spaan JA, et al. Wave speed in human coronary arteries is not influenced by microvascular vasodilation: implications for wave intensity analysis. Basic Res Cardiol. 2014;109:405.

    Article  PubMed  Google Scholar 

  10. Vulliemoz S, Stergiopulos N, Meuli R. Estimation of local aortic elastic properties with MRI. Magn Reson Med. 2002;47:649–54.

    Article  PubMed  Google Scholar 

  11. Ibrahimel SH, Shaffer JM, White RD. Assessment of pulmonary artery stiffness using velocity encoding magnetic resonance imaging: evaluation of techniques. Magn Reson Imag. 2011;29:966–74.

    Article  Google Scholar 

  12. Pichler G, Martinez F, Vicente A, Solaz E, Calaforra O, Redon J. Pulse pressure amplification and its determinants. Blood Press. 2016;25:21–7.

    Article  PubMed  Google Scholar 

  13. Weber T, Wassertheurer S, Hametner B, Parragh S, Eber B. Noninvasive methods to assess pulse wave velocity: comparison with the invasive gold standard and relationship with organ damage. J Hypertens. 2015;33:1023–31.

    Article  CAS  PubMed  Google Scholar 

  14. Saiki A, Sato Y, Watanabe R, Watanabe Y, Imamura H, Yamaguchi T, et al. The role of a novel arterial stiffness parameter, cardio-ankle vascular index (CAVI), as a surrogate marker for cardiovascular diseases. J Atheroscler Thromb. 2016;23:155–68.

    Article  PubMed  Google Scholar 

  15. Spronck B, Heusinkveld MH, Vanmolkot FH, Roodt JO, Hermeling E, Delhaas T, et al. Pressure-dependence of arterial stiffness: potential clinical implications. J Hypertens. 2015;33:330–8.

    Article  CAS  PubMed  Google Scholar 

  16. Spronck B, Avolio AP, Tan I, Butlin M, Reesink KD, Delhaas T. Arterial stiffness index beta and cardio-ankle vascular index inherently depend on blood pressure but can be readily corrected. J Hypertens. 2017;35:98–104.

    Article  CAS  PubMed  Google Scholar 

  17. Avolio AP, Chen S-G, Wang R-P, Zhang C-L, Li M-F, O'Rourke MF. Effects of aging on changing arterial compliance and left ventricular load in a in a northern Chinese urban community. Circulation. 1983;68:50–8.

    Article  CAS  PubMed  Google Scholar 

  18. Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet. 1997;3502:953–5.

    Article  Google Scholar 

  19. Mitchell GF, Moye LA, Braunwald E, Rouleau JL, Bernstein V, Geltman EM, et al. Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function. Circulation. 1997;96:4254–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westerhof, N., Stergiopulos, N., Noble, M.I.M., Westerhof, B.E. (2019). Wave Travel and Pulse Wave Velocity. In: Snapshots of Hemodynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-91932-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91932-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91931-7

  • Online ISBN: 978-3-319-91932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics